Physique Générale 4

Semestre de printemps 2019-2020

Lectures 3-4: Ondes électromagnétiques

- Ondes électromagnétiques
- Energie et q.d.m. d'une onde EM
- Dispersion

Hecht Ch. 3; (Griffiths E-M. Ch. 8)

Ondes électromagnétiques dans le vide

Les éguations de Maxwell admettent des solutions qui décrivent la propagation du champ é-m. Considérons une region de l'espace sans charges ni courants:

$$i) \nabla \cdot \mathbf{E} = 0$$

i)
$$\nabla \cdot \mathbf{E} = 0$$
 ii) $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$

$$iii) \nabla \cdot \mathbf{B} = 0$$

iii)
$$\nabla \cdot \mathbf{B} = 0$$
 iv) $\nabla \times \mathbf{B} = \varepsilon_0 \mu_0 \frac{\partial \mathbf{E}}{\partial t}$

$$\nabla \times (\nabla \times \mathbf{E}) = \nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = -\nabla \times \frac{\partial \mathbf{B}}{\partial t} = -\frac{\partial}{\partial t} \nabla \times \mathbf{B} = -\varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{E}}{\partial t^2}$$

$$\nabla \times (\nabla \times \mathbf{B}) = \nabla (\nabla \cdot \mathbf{B}) - \nabla^2 \mathbf{B} = \varepsilon_0 \mu_0 \nabla \times \frac{\partial \mathbf{E}}{\partial t} = \frac{\partial}{\partial t} \varepsilon_0 \mu_0 \nabla \times \mathbf{E} = -\varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{B}}{\partial t^2}$$

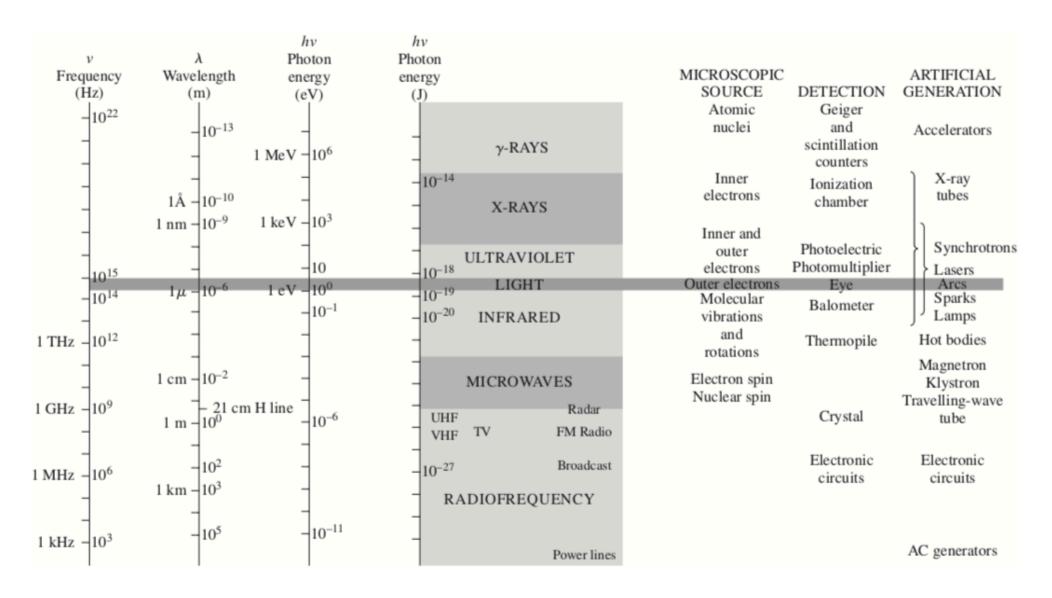
Equation des ondes
$$\nabla^2 \mathbf{E} - \varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \qquad \nabla^2 \mathbf{B} - \varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} = 0$$

$$\nabla^2 \mathbf{B} - \varepsilon_0 \mu_0 \frac{\partial^2 \mathbf{B}}{\partial t^2} = 0$$

Les champs se propagent dans le vide comme des ondes à la vitesse:

$$c = \frac{1}{(\varepsilon_0 \mu_0)^{1/2}}$$

Ondes électromagnétiques dans le vide



Les équations de Maxwell dans la matière

i)
$$\nabla \cdot \mathbf{D} = \rho_f$$
 ii) $\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}$ iii) $\nabla \cdot \mathbf{B} = 0$ iv) $\nabla \times \mathbf{H} = \mathbf{J}_f + \frac{\partial \mathbf{D}}{\partial t}$

avec $\mathbf{J}_f = \sigma \mathbf{E}$, et les relations constitutives $\mathbf{D} = \varepsilon \mathbf{E}$; $\mathbf{H} = \frac{1}{H} \mathbf{B}$ pour un milieux linéaire, on obtient :

$$\nabla^{2}\mathbf{E} - \varepsilon\mu \frac{\partial^{2}\mathbf{E}}{\partial t^{2}} - \mu\sigma \frac{\partial\mathbf{E}}{\partial t} = \nabla\left(\frac{\rho_{f}}{\varepsilon}\right) \qquad \nabla^{2}\mathbf{B} - \varepsilon\mu \frac{\partial^{2}\mathbf{B}}{\partial t^{2}} - \mu\sigma \frac{\partial\mathbf{B}}{\partial t} = 0$$

La charge libre est vite dissipée (transférée à la surface), $\rho_f \rightarrow 0$, car :

$$\frac{\partial \rho_f}{\partial t} = -\nabla \cdot \mathbf{J}_f = -\sigma(\nabla \cdot \mathbf{E}) = -\frac{\sigma}{\varepsilon} \rho_f \quad \rightarrow \quad \rho_f(t) = \rho_f(0) \; e^{-(\sigma/\varepsilon)t}$$

$$\nabla^2 \mathbf{E} - \varepsilon \mu \frac{\partial^2 \mathbf{E}}{\partial t^2} - \mu \sigma \frac{\partial \mathbf{E}}{\partial t} = 0 \qquad \nabla^2 \mathbf{B} - \varepsilon \mu \frac{\partial^2 \mathbf{B}}{\partial t^2} - \mu \sigma \frac{\partial \mathbf{B}}{\partial t} = 0$$

Dans un isolant neutre, σ , $\rho_f = 0$:

$$\nabla^2 \mathbf{E} - \varepsilon \mu \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \qquad \nabla^2 \mathbf{B} - \varepsilon \mu \frac{\partial^2 \mathbf{B}}{\partial t^2} = 0$$

Ondes planes monochromatiques dans le vide

Parmi les solutions de l'équation des ondes pour **E** et **B**, considérons des ondes planes monochromatiques de même fréquence, se propageant dans la direction z :

$$\tilde{\mathbf{E}}(z,t) = \tilde{\mathbf{E}}_0 e^{i(kz-\omega t)}$$
; $\tilde{\mathbf{B}}(z,t) = \tilde{\mathbf{B}}_0 e^{i(kz-\omega t)}$

$$\nabla \cdot \mathbf{E} = 0 \; ; \quad \rightarrow \quad \frac{\partial}{\partial z} \tilde{E}_{0,z} e^{i(kz - \omega t)} = ik \tilde{E}_{0,z} e^{i(kz - \omega t)} = 0 \quad \rightarrow \quad \tilde{E}_{0,z} = 0$$

$$\nabla \cdot \mathbf{B} = 0 \; ; \quad \to \quad \tilde{B}_{0,z} = 0$$

Les deux ondes sont transverses

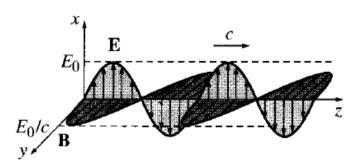
$$\nabla \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t} \; ; \quad \to \quad -k \, \tilde{E}_{0,y} = \omega \tilde{B}_{0,x} \; ; \quad k \, \tilde{E}_{0,x} = \omega \tilde{B}_{0,y} \quad \to \quad \tilde{\mathbf{B}}_{0} = \frac{k}{\omega} \, (\hat{\mathbf{z}} \times \tilde{\mathbf{E}}_{0}) \qquad (^{**})$$

Champ électrique et champ magnétique sont perpendiculaires et en phase

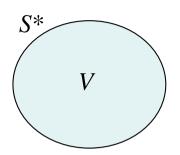
$$\tilde{B}_0 = \frac{k}{\omega} \, \tilde{E}_0 = \frac{1}{c} \, \tilde{E}_0$$

(**)
$$\tilde{\mathbf{E}}_0 \times \tilde{\mathbf{B}}_0 = \frac{k}{\omega} E_0^2 \hat{\mathbf{z}} = E_0 B_0 \hat{\mathbf{k}}$$

règle de la *main droite* Si **E** est parallèle à x, **B** est parallèle à y



Energie du champ électromagnétique – en bref (Griffiths Ch. 8)



Un volume V de *l'espace vide (ni charges ni courants)* entourée par une surface S*. Soit *u* la densité d'énergie du champ é-m.

L'équation qui exprime la conservation de l'énergie EM est:

$$\frac{\partial u}{\partial t} + \nabla \cdot \mathbf{S} = 0 \quad \to \quad \frac{\partial}{\partial t} \iiint_{V} u \, d\tau + \oiint_{S^{*}} \mathbf{S} \cdot d\mathbf{a} = 0 \qquad \qquad u = \frac{\varepsilon_{0} |\mathbf{E}|^{2}}{2} + \frac{|\mathbf{B}|^{2}}{2\mu_{0}}$$

$$u = \frac{\varepsilon_0 |\mathbf{E}|^2}{2} + \frac{|\mathbf{B}|^2}{2\mu_0}$$

S = vecteur "densité de courant d'énergie EM" $\mathbf{S} = \mathbf{J}_{\acute{e}nergie} = u \mathbf{v}$ $[S] = W m^{-2}$

$$\mathbf{S} = \mathbf{J}_{\acute{e}nergie} = u \mathbf{V} \qquad [S] = W m^{-2}$$

 $\oint_{S^*} \mathbf{S} \cdot d\mathbf{a}$ flux d'énergie EM par unité de temps

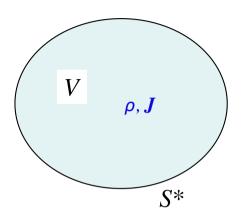
$$\frac{\partial u}{\partial t} + \frac{1}{\mu_0} \nabla \cdot (\mathbf{E} \times \mathbf{B}) = 0$$

Théorème de Poynting

$$\mathbf{S} = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B}) = \mathbf{E} \times \mathbf{H}$$

Vecteur de Poynting

QdM du champ EM: en bref (Griffiths Ch. 8)



Une onde EM interagit dans un volume V avec des particules (densité de charge ρ , densité de courant **J**). La quantité de mouvement dans V est $\mathbf{p}_{\text{méc}}$.

$$\frac{d\mathbf{p}_{m\acute{e}c}}{dt} = \mathbf{F} = \int_{V} (\rho \mathbf{E} + \mathbf{J} \times \mathbf{B}) d\tau$$

Après quelques manipulations on peut écrire ceci comme:

$$\frac{d\mathbf{p}_{m\acute{e}c}}{dt} = -\varepsilon_0 \mu_0 \frac{d}{dt} \int_V \mathbf{S} \, d\tau - \Phi_{qdm}$$
 variation de qdm associé au champ é.-m. en V
$$\mathbf{\tilde{T}} \cdot d\mathbf{a})$$
 à travers S*

La densité de q.d.m. associée au champ électromagnétique est donc:

$$\mathbf{g} = \varepsilon_0 \mu_0 \mathbf{S} = \varepsilon_0 (\mathbf{E} \times \mathbf{B}) = \frac{1}{c^2} \mathbf{S} \qquad g = \frac{1}{c^2} S \; ; \quad S = c u \quad \to \quad \mathbf{g} = \frac{1}{c} u$$

$$g = \frac{1}{c^2}S; \quad S = cu$$

$$g = \frac{1}{c}u$$

Considération "diétrologique" - en relativité: $E^2 = m_0^2 c^4 + p^2 c^2$

$$E^2 = m_0^2 c^4 + p^2 c^2$$

Pour une particule de masse au repos $m_0=0$: $E^2=p^2c^2 \rightarrow p=\frac{1}{c}E$

$$E^2 = p^2 c^2 \rightarrow p$$

Champ é-m = gaz de particules de masse au repos nulle (*les photons*)

Energie et q.d.m. d'une onde électromagnétique sinusoïdale

$$E = cB \; ; \; u = \frac{1}{2} (\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2) = \frac{1}{2} \varepsilon_0 (E^2 + \frac{1}{\varepsilon_0 \mu_0} \frac{E^2}{c^2}) = \varepsilon_0 E^2 = \varepsilon_0 E_0^2 \cos^2(kz - \omega t + \delta)$$
$$\langle u_{\acute{e}l} \rangle = \langle u_{mag} \rangle = \frac{1}{4} \varepsilon_0 E_0^2$$

Dans une onde EM, la densité d'énergie associée au champ électrique est égale à la densité d'énergie associée au champ magnétique. Les densités d'énergie et de quantité de mouvement moyennes (sur une période) sont:

$$\langle u \rangle = \varepsilon_0 E_0^2 \langle \cos^2(kz - \omega t + \delta) \rangle = \frac{1}{2} \varepsilon_0 E_0^2; \quad \langle \mathbf{g} \rangle = \frac{1}{2c} \varepsilon_0 E_0^2 \hat{\mathbf{z}}$$

L'intensité de l'onde = flux (moyenne sur une période) d'énergie EM par unité de temps et de surface est la moyenne du module du vecteur de Poynting:

$$I = \langle S \rangle = \frac{1}{\mu_0} \langle |\mathbf{E} \times \mathbf{B}| \rangle = \frac{1}{2} c \, \varepsilon_0 \, E_0^2 \qquad [I] = [W \, m^{-2}]$$

L'intensité de l'onde est proportionnelle au carré de l'amplitude (vrai en général)

On vérifie que:
$$I = \frac{1}{2}c \, \varepsilon_0 \, E_0^2 = c \, \langle u \rangle$$

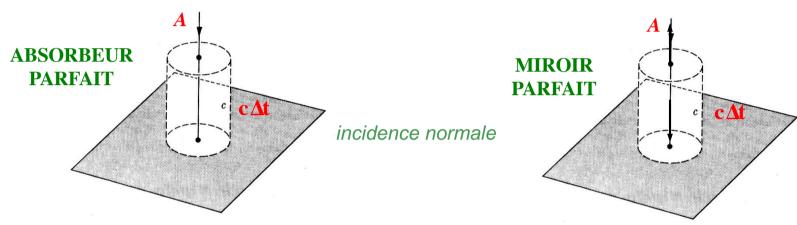
L'énergie (et aussi la qdm) est transportée à la vitesse de l'onde (vrai en général)

Pression de radiation

Lorsqu' une onde EM frappe une surface, elle lui cède de la q.d.m.

quantité de mouvement EM absorbée par unité de temps et de surface

Force/unité de surface = Pression EM



 $\Delta \mathbf{p} = q.d.m.$ transportée à la surface en Δt :

$$\Delta \mathbf{p} = c \mathbf{g} A \Delta t = -c A \Delta t \frac{I}{c^2} \hat{\mathbf{z}}$$

$$\mathbf{F} = \frac{\Delta \mathbf{p}}{\Delta t} = -\frac{I}{c} A \hat{\mathbf{z}}$$

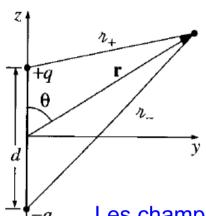
$$\langle pression \rangle = \frac{F}{A} = \frac{I}{c} = \langle u \rangle$$

$$\mathbf{F} = 2\frac{\Delta \mathbf{p}}{\Delta t} = -2\frac{I}{c} A \hat{\mathbf{z}}$$

$$\langle pression \rangle = \frac{F}{A} = 2\frac{I}{c} = 2\langle u \rangle$$

soleil sur miroir (sur terre) $P = 6x10^{-6} \text{ Nm}^{-2}$ Force sur la terre entière: $\pi R^2 P \sim 1.2 \cdot 10^{14} \cdot 6x10^{-6} \sim 7 \cdot 10^8 \cdot N \sim 70'000 \text{ tons}$

Un dipôle électrique oscillant



$$\mathbf{p}(t) = p_0 \cos(\omega t) \,\hat{\mathbf{z}} \quad ; \quad p_0 = q_0 d$$

$$\mathbf{E}(r,\theta,t) = -\nabla V - \frac{\partial \mathbf{A}}{\partial t} = -\frac{\mu_0 p_0 \omega^2}{4\pi} \left(\frac{\sin \theta}{r}\right) \cos[\omega(t-r/c)] \,\hat{\theta}$$

$$\mathbf{B}(r,\theta,t) = \nabla \times \mathbf{A} = -\frac{\mu_0 p_0 \omega^2}{4\pi c} \left(\frac{\sin \theta}{r}\right) \cos[\omega(t - r/c)] \hat{\phi}$$

Les champs se propagent comme des ondes sphériques monochromatiques transverses, à la fréquence d'oscillation $v = \omega/2\pi$ ($\lambda = c/v$).

E et **B** sont perpendiculaires entre eux, et $E_0/B_0=c$.

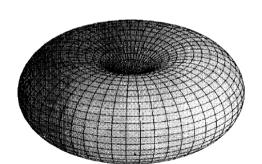


diagramme polaire de la puissance rayonnée

$$\mathbf{S}(r,\theta,t) = \frac{1}{\mu_0} (\mathbf{E} \times \mathbf{B}) = \frac{\mu_0}{c} \left\{ \frac{p_0 \omega^2}{4\pi} \left(\frac{\sin \theta}{r} \right) \cos[\omega(t - r/c)] \right\}^2 \hat{\mathbf{r}}$$

$$\langle \mathbf{S} \rangle = \left(\begin{array}{c} \\ \\ \end{array} \right)$$

$$\langle \mathbf{S} \rangle = \left(\frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c} \right) \frac{\sin^2 \theta}{r^2} \ \hat{\mathbf{r}} \approx a_{\theta}^2$$
 Rayleigh scattering \rightarrow couleur du ciel

La puissance movenne rayonnée est:

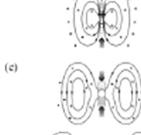
$$\langle P \rangle = \oint \langle \mathbf{S} \rangle \cdot d\mathbf{a} = \frac{\mu_0 p_0^2 \omega^4}{32\pi^2 c} \int \frac{\sin^2 \theta}{r^2} r^2 \sin \theta d\theta d\phi = \frac{\mu_0 p_0^2 \omega^4}{12\pi c} \approx \omega^4 \approx a^2$$
Larmor

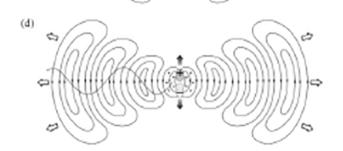
far field

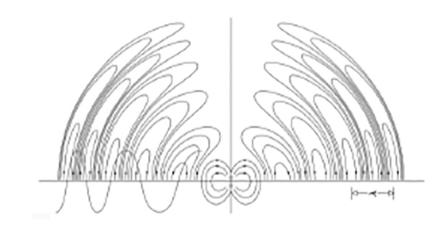
Rayonnement d'un dipôle oscillant

d=0: les lignes du champ forment une boucle

 Δt entre 2 loops: $\tau = \pi/\omega$







Antenne dipolaire (de Hertz):

$$\langle P \rangle = \frac{\mu_0 p_0^2 \omega^4}{12\pi c} = \frac{1}{2} R \langle I^2 \rangle$$
 R = "résistance d'antenne"

Ondes é-m dans un diélectrique linéaire homogène isotrope

Equation des ondes

$$\nabla^2 \mathbf{E} - \varepsilon \, \mu \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0$$

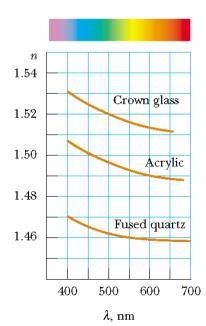
$$\nabla^2 \mathbf{E} - \varepsilon \, \mu \frac{\partial^2 \mathbf{E}}{\partial t^2} = 0 \qquad \nabla^2 \mathbf{B} - \varepsilon \, \mu \frac{\partial^2 \mathbf{B}}{\partial t^2} = 0$$

Les champs se propagent dans le milieu comme une onde à la vitesse:

$$v = \frac{1}{(\varepsilon \, \mu)^{1/2}} = \frac{c}{n} \; ; \qquad n = \sqrt{\varepsilon_r \, \mu_r} \cong \sqrt{\varepsilon_r} \qquad \qquad \text{indice de réfraction}$$

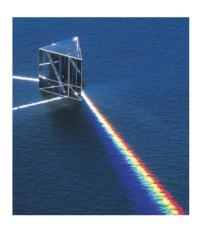
$$n = \sqrt{\varepsilon_r \, \mu_r} \cong \sqrt{\varepsilon_r}$$

$$\mathbf{S} = \frac{1}{\mu} (\mathbf{E} \times \mathbf{B}) = \mathbf{E} \times \mathbf{H} \; ; \quad u = \frac{1}{2} \left(\varepsilon E^2 + \frac{1}{\mu} B^2 \right) ; \quad g = \varepsilon \; \mathbf{E} \times \mathbf{B} \; ; \quad I = \frac{1}{2} \varepsilon \mathbf{v} E_0^2$$



dispersion

$$v = v(\lambda) \rightarrow n = n(\lambda)$$



Conditions aux limites à une interface:

(i)
$$\epsilon_1 E_1^{\perp} = \epsilon_2 E_2^{\perp}$$
, (iii) $\mathbf{E}_1^{\parallel} =$

(ii)
$$B_1^{\perp}=B_2^{\perp}$$
,

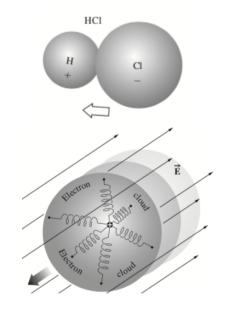
(i)
$$\epsilon_1 E_1^{\perp} = \epsilon_2 E_2^{\perp}$$
, (iii) $\mathbf{E}_1^{\parallel} = \mathbf{E}_2^{\parallel}$,
(ii) $B_1^{\perp} = B_2^{\perp}$, (iv) $\frac{1}{\mu_1} \mathbf{B}_1^{\parallel} = \frac{1}{\mu_2} \mathbf{B}_2^{\parallel}$.

Origine de la dispersion

L'onde é-m interagit avec les moments de dipôle (permanents ou induits) des atomes/molécules.

1) diffusion élastique: globalement l'onde se propage avec la même fréquence, mais $\lambda=\lambda_0/n$

2) absorption résonnante (modèle classique)



$$q_e E_0 \cos \omega t - m_e \omega_0^2 x = m_e \frac{d^2 x}{dt^2}$$

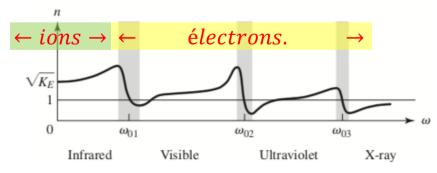
$$x(t) = \frac{q_e/m_e}{(\omega_0^2 - \omega^2)} E_0 \cos \omega t$$

Polarisation (moment de dipôle/volume)
$$(\epsilon - \epsilon_0)\vec{\mathbf{E}} = \vec{\mathbf{P}}$$

$$x(t) = \frac{q_e/m_e}{(\omega_0^2 - \omega^2)} E(t)$$
 $P = qxN = \frac{q_e^2 NE/m_e}{(\omega_0^2 - \omega^2)}$

$$\epsilon = \epsilon_0 + \frac{P(t)}{E(t)} = \epsilon_0 + \frac{q_e^2 N/m_e}{(\omega_0^2 - \omega^2)}$$

$$\epsilon = \epsilon_0 + \frac{P(t)}{E(t)} = \epsilon_0 + \frac{q_e^2 N/m_e}{(\omega_0^2 - \omega^2)} \qquad \qquad \varepsilon_r = \frac{\varepsilon}{\varepsilon_0} = n^2(\omega) = 1 + \frac{Nq_e^2}{\epsilon_0 m_e} \left(\frac{1}{\omega_0^2 - \omega^2}\right)$$



 $\frac{dn}{d\omega} < 0$: anomalous dispersion

Oscillateurs amortis:

$$n^{2}(\omega) = 1 + \frac{Nq_{e}^{2}}{\epsilon_{0}m_{e}} \sum_{j} \frac{f_{i}}{\omega_{0j}^{2} - \omega^{2} + i\gamma_{j}\omega}$$

f_i: forces d'oscillateur

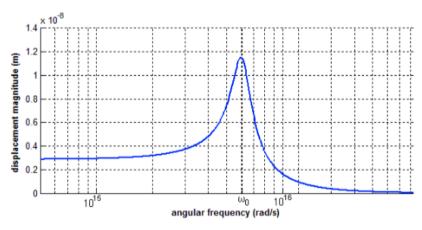
Rappel: oscillateur harmonique forcé

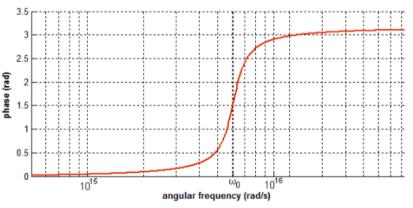
$$\ddot{x} - \gamma \dot{x} + \omega_0^2 x = A e^{i\omega t}$$

$$x(t) = \tilde{X}_0 e^{i\omega t} \rightarrow \tilde{X}_0(-\omega^2 - i\gamma\omega + \omega_0^2) = A$$

$$\tilde{X}_0 = A \frac{1}{(\omega_0^2 - \omega^2) - i\gamma\omega} = X_0 e^{-i\phi}$$

$$\tan \phi = \frac{\operatorname{Im}[\tilde{X}_0]}{\operatorname{Re}[\tilde{X}_0]} = \frac{\gamma \omega}{(\omega_0^2 - \omega^2)}$$





Ondes électromagnétiques dans un conducteur

Dans un conducteurs il faut considérer des courants libres proportionnels a **E** selon la loi de Ohm: $J_f = \sigma E$ On obtient:

dissipation!

$$\nabla^2 \mathbf{E} - \varepsilon \mu \frac{\partial^2 \mathbf{E}}{\partial t^2} - \mu \sigma \frac{\partial \mathbf{E}}{\partial t} = 0$$

$$\nabla^2 \mathbf{E} - \varepsilon \mu \frac{\partial^2 \mathbf{E}}{\partial t^2} - \mu \sigma \frac{\partial \mathbf{E}}{\partial t} = 0 \qquad \nabla^2 \mathbf{B} - \varepsilon \mu \frac{\partial^2 \mathbf{B}}{\partial t^2} - \mu \sigma \frac{\partial \mathbf{B}}{\partial t} = 0$$

Il y a encore des solution type onde plane, mais le vecteur d'onde est complexe:

$$\tilde{k} = k + i\kappa = \frac{\omega}{c}\tilde{n} = \frac{\omega}{c}(n_R + in_I)$$

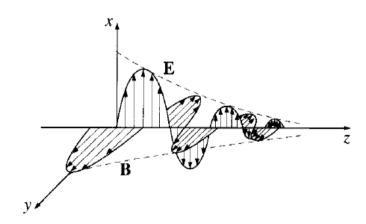
$$\tilde{\mathbf{E}}(z,t) = \tilde{\mathbf{E}}_0 e^{-\kappa z} e^{i(kz-\omega t)}, \quad \tilde{\mathbf{B}}(z,t) = \tilde{\mathbf{B}}_0 e^{-\kappa z} e^{i(kz-\omega t)}$$

E et **B** sont atténués avec une longueur caractéristique (skin depth): $d = \frac{1}{\kappa} = \frac{c}{\alpha n_x} \approx \frac{1}{\sigma}$

Pour un conducteur **idéal**: $\sigma = \infty$; d = 0 et l'onde ne pénètre pas dans le conducteur

$$\frac{E_0}{B_0} = \frac{\omega}{|\tilde{k}|} = \frac{\omega}{\sqrt{k^2 + \kappa^2}}$$

Il y a aussi un déphasage $\phi = \tan^{-1}(\kappa/k)$ entre E et B



Ondes électromagnétiques dans un conducteur: dispersion

$$n^{2}(\omega) = 1 + \frac{Nq_{e}^{2}}{\epsilon_{0}m_{e}} \left[\frac{f_{e}}{-\omega^{2} + i\gamma_{e}\omega} + \sum_{j} \frac{f_{j}}{\omega_{0j}^{2} - \omega^{2} + i\gamma_{j}\omega} \right]$$

électrons libres

électrons liés

at optical frequencies

$$n^2(\omega) = 1 - \frac{Nq_e^2}{\epsilon_0 m_e \omega^2} = 1 - \left(\frac{\omega_p}{\omega}\right)^2$$
 plasma frequency

