The eigenvalues A of a self-adjoint matrix M € C"*" are
real, A € R. A unitary operator has eigenvalues with unit
modulus, |A| = 1. The eigenvalues of an anti-Hermitian ma-
trix are purely imaginary. For a normal matrix, the eigen-
vectors vy,ve € C™ related to two different eigenvalues A,
A2 € R, A1 # g are orthogonal, (vq|ve) = 0. Scalar product:
(@ly) = 3211 @fyi, © = (23),y = (y;) € C".

A self-adjoint /unitary matrix is a particular case of a normal
matrix. A self-adjoint matrix is positive definite if and only
if all its eigenvalues are strictly positive.

Gram Schmidt Orthogonalization process:
Linearly independent vectors: {X;}i=1,...n

Orthogonal vectors: ; = x; — Z; _{djlxi)o;
Orthonormal vectors: ¢; = ¥; /|||

Operators Definitions:
Self-adjoint/Hermitian: H = H' < (|Hx) = (H|x).
The composition of two self-adjoint matrices is itself self-
adjoint if and only if the two matrices commute.
anti-Hermitian: H = —H'

Unitary: U™t = UT <= (Uy|Ux) =
Normal: [A, AT] = AAT — ATA =0.

(Plx)-

Spectral Theorem For a normal operator on an inner
product space V over C, there always exists an associated
orthonormal eigenbasis of V. <—-

For a normal matrix M € C™*" there always exists a unitary
matrix U € C**" such that D = UTMU.

Existence of common orthonormal eigenbasis Two
normal matrices A, B € C"*" are simultaneously diagonal-
izable if and only if they commute ([A, B] = 0).

Eigenvalue problem det(Al — A)=0 = {\;},
(A — )\LI)’U, =0 = {’Uz}

Simultaneous diagonalisation for A, B € C"*™:

The eigenvector v spaning the one-dimensional eigenspace as-
sociated to A relative to the eigenvalue A4 must be an eigen-
vector of B as well. Therefore, v must be colinear to one of
the vectors of a common eigenbasis of A and B. Same reason-
ing applies for the eigenvector w spaning the one-dimensional
eigenspace associated to B relative to the eigenvalue Ap.
= {u1 = v/||v|,u2 = w/||w|,us = w1 X uz} forms a
common orthonormal eigenbasis of A and B.

Scalar 15¢ order ODE linear: 3’ = a(x)y + b(z),

yo = y(z) =yo eacp[f;o a(s)ds] —l—ffo b(s) exp[ [’
Existence and uniqueness of solution for IVP.

y(zo) =
a(t)dt]ds.

System of 15t order ODEs
W) — Ay +b(z) =
y(x) = expl(x — x0) Alyo + f;o exp[(z — s)A]b(s)ds.
Existence and uniqueness of solution for IVP.

exp(A) = Pexp(Da)P~ 1. exp(zA) = Pexp(zD)P ™1
If [A, B] = 0, then exp(A + B) = exp(A)exp(B).

linear with constant matrix:

Scalar higher order ODE dT;z(f) = oz, y, 1,y )
mn n—1
Linear: ddz(f) + an_l(as)ddxny,(f) + ...+ apy(x) = b(x).
Cast into a system of n 15* order ODE:
o T
ddj;gf) = (22a ey Amy (b([L'7 Y, yla ) y(n—l)))

If the coefficients a; are constants, solve the homogeneous
equation with the characteristic equation:

AN+ ap i AN T+ +adta=0 =

If the roots are distinct: y;(z) = exp(\;x).

If a root has multiplicity m > 1: y;(z) = zfexp(Az), j =
0,....,m—1.

Wronskian Given a set of n solutions {y;(x) }i=1,... » to the

homogeneous linear ODE of order n
<dd?;SLI) +an—l($)dd n (1) + .. +a0y( ) O) .

y1() Yn()
Wy, yn)(@) = | :
vV () s ()

If W(z) # 0, the set of solutions {y;(z)}i=1,.n are linearly
independent. If W(x) = 0, they are linearly dependent.

d
The wronskian verifies e —ap—1(x)W ().
Abel’s identity: W(z) = W(xg) exp[— fo an—1(s)ds].
Particular solution: y,(z) S i) [* ‘{/VV((SS))ds,
y1(8) . 0 v yn(9)

where W;(s) = : o 0

u" ) b(s) s

itheolumn

Scalar linear 27 order ODE o +p(z)y' +q(z)y = r(x).
Solution: y(x) = C1y1(z) + Cayz(x) +yp(x), C1,Cs € R Sys-
tematic procedure:

1) Obtain y; (x) with Frobenius Method or obvious solution.
2) Deduce yo(x) with Frobenius or the general relation:

yo(a) = () [ 5 fomeap { fp
) Find yp(x) with variation of parameter method: y,(x) =

f WT;ZU;Q()S s)ds — i (z f r(8)yz( S)

W(y1,y2)(s) )

Frobenius method write y(x) in the form:

y(z) = X2 gaj(x —x0)7*%, ap #0, a; € C, s € C,

y'(x) = 272000 + s)aj(x — w71,

y'(@) =320+ 8)(J + 5 — Daj(@ — @) 2.

Plug into the homogeneous ODE and regroup by powers of
(x — ). All the coefficients must be 0. The coefficient of the
lowest power gives the indicial equation. The a; are deter-
mined using the reccurence relation provided by setting the
coefficients of higher powers of (v — zg) to 0.

Fuch’s theorem Around an ordinary point, Frobenius
gives 2 linearly independent solutions (with s; = 1,s9 = 0).
Around an regular singular point, Frobenius gives at least 1
solution (s € C).

ordinary point: p(x),q(x) are finite at x = x¢ and can be
expanded as positive integer power series about xg.

p(z) =3 Zopi(e —z0),  qz) =372 q;(z — z0)’.
reqular singular point: p(x),q(x) can be expanded as

ple) =372 (e =m0, ql@) =372 ,q(z — o).

2+ (p1—1)s+qo=0.
(33 wo)7 T, yo(x) = yi(2)

General solution (s)

1) s12 =a+if: yi(z) =

Mg ||

aj (x — )it

+ 32 bi(a — z0)7t

aj (x — mp)Iter,

2) s1=s2=s: yi(x) =

VOM8W

y2(2) = y1(2) log(lw—x |
3) s1 > 89 € R: yl((ﬂ) =

If (s1 —s2) ¢ N, ya(2) = ZJ 0as(r — $0)J+52
Else, y2(2) = Cy1(2)log (|z — @o|) + 32720 bj (@ — o)+

W‘Mg

BCP Dirichlet: Imposed values y(a) = yq,y(b) = yp.
Neumann: Imposed derivatives y'(a) = v,y (b) = y;.
Robin: Weighted combination of Dirichlet and Neumann.
Existence and uniqueness of the solution is not ensured.



Sturm-Liouville eigenvalue problem

w(lx);fv [po(x)iyc} +aq(@)y = Ay

Homogeneous BCs such that £ is self-adjoint w.r.t.:

b
<f|g>=/ w(@)f*(x)g(x)dr,  po(x),q(z), w(z) ER,

w(x) > 0forz €la, b.
In order to prove self adjointness, show the relation (f|Lg) =

(Lf|g) by integrating by parts two times. Positive definite-
ness: (f|[Lf) >0 and (f|Lf)=0<= f(r)=0

Ly=—

continuous and po(z),

Casting an ODE into self-adjoint form
az(z)y" + a1(x)y’ + ap(z)y = Ay, one finds:

o= g () 5):

po(z) = —az(z)w(z),  q(x) = ao().
with C' an arbitrary constant, except for its sign chosen to
ensure that the weight function w(z) is positive.
x = kr,A = k2 is a useful substitution to collapse a Sturm
Liouville problem into a special ODE (Bessel, Laguerre, etc.).

Starting from:

Fourier series

Full series for an interval [—L, L],

f@)= 3 e E ey =g [5 f(s)em e/ b
n=—oo

flo) =%+ Z an cos (“F%) + Z by, sin (“F7)

an = Lf f )cos (%T)ds, b, = Lf f(s)sin (™2 )ds.

For even functlon : b, =0, For odd functlon a, = 0.

Half-range series of aperiodic f(z) over [a,b]

Set L=b—a,z=x—a.

Cosine: Define f(z) = f(z) if [0,L] and f(z) = f(—2) if

L

(*%7)ds for n >0
Sine: Define f(z) = f(2) if z € [0, L] and f(z) = —f(—z) if
€ [-L,0]. Then b, = %f ) sin (227 )ds.

z €
€ [-L,0]. Then, a,, = 2 [, f(s) cos
S
f(s

Half-range series of f(x,y) over [0, L] x
Sine: f(z) = Z chlsm(’“”)sm(L—)

c»:LL fo foy

[0, Ly}

x,y) sin ( kL”) sin (i’—)dxdy

Parseval’s identity

FNa(s)) = [5 g()f () ds = 205 guf.

Parseval’s theorem

FEIf(s) =20 3 |cn|2:L<'“3'2

n=—oo

+ S llaal+ 1))

Convolution theorems
L - ] P
= f_L g(s)f(x—s)ds=2L > Fgnemme/ L.

f(@)g(z) = h(z) =307 hne™™/L with
hn = Z?‘s:foo gmfn—m

Solving PDEs with BCs using Fourier series

1) Obtain ODEs by separation of variables method.

2) Solve ODEs satisfying boundary conditions.

3) Solve PDE satisfying initial conditions:

Decompose initial conditions in half-range Fourier series.
For Dirichlet BC, choose sine series.

For Neumann BC, choose cosine series.

Delta Function :
0(x)=0 Ve #0,zeR. f(0 f flx
bn(2) = %e—n%z or 8, (z) = M

TC

Suld —K) = A [ R
nlgrgo ffooo f(x)6,(z)dx = ffooo f(x)d(x)dx

Fourier transform

Flf(t)] =g(w) = \/% I f(s)e™sds.
FHglw)] = £ = = 72, glw)e™"d.

Of a Gaussian function (Re(a) > 0) :

FIFO) = g(w) = = [ e esds = Loexp ().
Of unity :
_ _ 1 0 iws .

F(1] = g(w) = ors fioo e“sds = nl;rrgc V276, (w).
Of delta function :
Flo(t —a)] = g(w) = \/% JZ5 6(t —a)e™sds = \/%ei”“.
In 3D space :

[ (_)] (gﬂ)sm fRS 5‘)61k Sd3s.

Flg(k)] = W Jgs g(k)e*Td3k.

Elementary properties : given F[f(r)] = g(
FIf(F = B)] = e'Brg(k). FIf(a)] = Zzgla~th),a > 0.

FUC) = 9= FI ] =g" ().
FIVF() = —ikg(k).  F[V2f(F)] = —k?g(k).
FJ7 o f(s)ds| = 22 4 7g(0)3(w).

Fourier convolution :
(V+U)(r)= \/127f°° U(s)V(r — s)ds.

(V5 U)() = goars Jos UGV = 5P,

18t convolution theorem Defining f(k) = F[f(7)],

[ UV (r—s)ds = foo Uk)V (k)e~™*"dk.

Jos U g)v 7= 8)dPs = [ UK)V (K)e *Td3k.

This result can be proven by replacing the definition of the
inverse FT of U and V on the RHS, using Fubini’s theorem
and the definition of the delta sequence 6§, (g — k).

Parseval’s theorem : R R
[ U)W (s)ds = [ U(k)W*(k)dk

— (U|W) = (U|W). One therefore has : |U]|2 = ||U|2.

Solving unbounded PDEs using Fourier transforms
1) Apply Fourier transform to both sides (with elementary
properties).

2) Solve the transformed equation using transformed initial
=it =0), wo(k)=52|

3) Apply inverse Fourier transform to obtain the solution.
4) Compare with the convolution theorem form. If the PDE
is of higher dimension, first apply F,, then F, (or inversely).
When applylng Fz, keep in mind the following relations:

Fo(G8) = 27l and Fo(5%) = —K2Fa(v)

conditions: (k)

Useful trigonometric relations
sin(z) + sin(y) = 2sin( %) cos(%5Y).
) _ cos(m—y)—cos(m+y)

- 2

sin(x) sin(y

cos(z) — cos(y) = —2sin(ZEY)

:E’L/)
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