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The Dirac Delta
The following properties exist for a Dirac Delta distribution δ(x):

�
δ(x) = 0 for x �= 0, x ∈ R (5.1)

�
f(0) =

∫ ∞

−∞
dx f(x)δ(x) (5.2)

where f(x) is any well behaved function, and the integration
includes the origin. For the special case f(x) = 1:

∫ ∞

−∞
dx δ(x) = 1.

Clearly, δ(x) is an infinitely high, and infinitely thin, spike at x = 0.
The problem is that no such function exists, in the usual sense of a
function.

However, the property of Eq. (5.2) can be developed rigourously as
the limit of a sequence. An example of a sequence has already been
encountered in this course at the end of the section on Hilbert Spaces.
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Sequences δn(x) and distribution δ(x)
δn(x) are a sequence of functions each labelled by n. The idea is that δn(x)
recovers the properties of δ(x) in the limit n → ∞.

We require that δn(x) are sequences of well behaved functions except in the limit
n → ∞. The limit

lim
n→∞ δn(x)

does not exist, but the following holds:

lim
n→∞

∫ ∞

−∞
dx f(x)δn(x) =

∫ ∞

−∞
dx f(x)δ(x), (5.3)

which from Eq. (5.2) is f(0). Equation (5.3) defines δ(x), and as such, δ(x) is
labelled a distribution (not a function).

Let us now consider two analytic sequences δn(x), the first being useful because it
is easily differentiable, and the second (as we will see) being useful for Fourier
analysis.

δn(x) =
n√
π
exp(−n2x2) (5.4)

δn(x) =
sinnx

πx
. (5.5)
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Particular sequences δn(x)
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Notes

The Fourier Sequence

δn(x) =
sin(nx)

πx

conforms to the properties of a delta function, specifically

f(0) = lim
n→∞

∫ ∞

−∞
dx f(x)δn(x),

even though δn(x) is apparently non-zero as n → ∞ for x �= 0. This occurs
because δn(x) oscillates infinitely fast around zero with respect to varying x,
so that values of f(x) for x �= 0 cancel over the integral path.
Mathematically, on can use a simple change of variable y = nx, so that,

lim
n→∞

∫ ∞

−∞
dx f(x)δn(x) = lim

n→∞

∫ ∞

−∞
dy f(y/n)

sin(y)

πy
= f(0)

∫ ∞

−∞
dy

sin(y)

πy
= f(0)



The Fourier Integral
By direct integration it is straightforward to show that

1

2π

∫ n

−n
exp(iωt′) dω =

sinnt′

πt′
,

and hence, from Eq. (5.5) one can define a sequence

δn(t
′) =

1

2π

∫ n

−n
exp(iωt′) dω (5.6)

From noting that the definition of the Dirac delta of Eq. (5.2) is compatible with
a shift of the origin:

f(t) =

∫ ∞

−∞
dt′ f(t′)δ(t′ − t),

and from the definition of the Dirac distribution (5.3), the sequence of Eq. (5.6)
gives (note we presently use t variable instead of x),

f(t) = lim
n→∞

∫ ∞

−∞
dt′ f(t′)δn(t′ − t) = lim

n→∞
1

2π

∫ ∞

−∞
dt′ f(t′)

[∫ n

−n
eiω(t′−t) dω

]
.

Changing the order of integration, and taking infinite limit in n gives the Fourier
Integral

f(t) =
1√
2π

∫ ∞

−∞
dω e−iωtg(ω) with g(ω) =

1√
2π

∫ ∞

−∞
dt′ eiωt′f(t′). (5.7)
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Fourier Transform and Inverse Fourier Transform
Now, Eq. (5.7), is repeated here as follows (on replacing t′ with s):

f(t) =
1√
2π

∫ ∞

−∞
dω e−iωtg(ω) (5.8)

and

g(ω) =
1√
2π

∫ ∞

−∞
ds eiωsf(s). (5.9)

The second of these equations g(ω) (Eq. (5.9)) is the Fourier transform of f , i.e.
F [f ], with F The Fourier transform operator. The first of these equations (Eq.
(5.8)) is known as the inverse Fourier transform of g(ω), i.e. F−1[g], which
provides us with a Fourier integral representation of the original function f .

The Fourier integral, Eq. (5.8) illustrates the value of Fourier analysis in signal
processing.

� The Fourier transform operation of Eq. (5.9) enables us to express a time
varying function f in the frequency (ω) domain, or transform domain. We
will see that some problems are more easily treated in the transform domain.
After working on such problems in the transform domain, the inverse
transform of Eq. (5.8) enables us to return to the real (time, or Euclidean
space) domain.

� If f(t) is an arbitrary function, Eq. (5.8) describes the signal as composed of
a superposition of waves e−iωt at angular frequencies ω, with respect to
amplitudes g(ω). From this we can make direct analogy with Fourier series.
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Existence conditions for Fourier transforms and Inverse
Fourier transforms

If f(t) is absolutely integrable over all t, i.e. if

∫ ∞

−∞
dt |f(t)|

exists, and if f(t) is piecewise continuous on every finite interval, then
the Fourier transform of f(t) defined by Eq.(5.9) exists (see Kreyzsik
for more details).

Similarly, if g(ω) is absolutely integrable over all ω, i.e. if

∫ ∞

−∞
dω |g(ω)|

exists, and if g(ω) is piecewise continuous on every finite interval,
then the inverse Fourier transform of g(ω) defined by Eq.(5.8) exists.
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Analogy between Fourier Integral and Fourier Series
The 2L periodic complex exponential Fourier series representation of f(t) as given
by Eq. (4.9) can be written (on deploying n → −n):

f(t) =

∞∑
n=−∞

cn e−inπt/L

where

cn =
1

2L

∫ L

−L
ds f(s) einπs/L , n any integer

Meanwhile, for a function f(t), the Fourier integral representation of this function
is

f(t) =
1√
2π

∫ ∞

−∞
dω g(ω) e−iωt

where

g(ω) =
1√
2π

∫ ∞

−∞
ds f(s) eiωs.

The analogy between Fourier series and transform representation is clear.
However, the Fourier integral representation of f(t) does not require periodicity
within the full domain −∞ < t < ∞. Fourier transforms are typically employed
for problems involving non-periodic functions that are defined over −∞ < t < ∞
(or e.g. −∞ < x < ∞). This will be seen in the PDE applications studied in this
course.
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Notes

Beware that some text books use the opposite signs in the exponentials to
those defined here, for both the Fourier transform and the inverse. In this
course we follow notation in Arfken.

In addition, Fourier transforms and inverse transforms in some textbooks will

differ by factors of
√
2π, though as with the sign changes in the exponentials

mentioned above, the various conventions always ensure that the Fourier

integral representation of f is defined correctly in terms of f .



Derivation of Fourier Integral from a Fourier Series
Let us begin with the series representation of f(t), with one period over [−L,L]:

f(t) =
∞∑

n=−∞

exp(−iwnt)

2L

∫ L

−L
ds f(s) exp(iwns) with wn =

nπ

L
.

Now, define

Δw = wn+1 − wn =
π

L
, or,

1

L
=

Δw

π

so that

f(t) =

∞∑
n=−∞

Δw
exp(−iwnt)

2π

∫ L

−L
ds f(s) exp(iwns),

which is valid for any fixed L, arbitrarily large but finite. In limit L → ∞, we
assume that the resulting non-periodic function f(t) is absolutely integrable. In
addition, since Δω → 0 as L → ∞, the integral definition:

lim
L→∞

⎧⎨
⎩

∞∑
n=−∞

Δw fn(wn)

⎫⎬
⎭ =

∫ ∞

−∞
dw fn(w)

enables us to see that as L → ∞, the Fourier Series is identical to the Fourier
Integral:

lim
L→∞

f(t) =

∫ ∞

−∞
dw

exp(−iwt)

2π

∫ ∞

−∞
ds f(s) exp(iws),
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Finite Wave Train - a non-periodic signal
We now examine an important signal: that of a simple sinusoidal pulse over a
finite time only, i.e.

f(t) =

{
sinω0t for |t| ≤ Nπ/ω0

0 for |t| > Nπ/ω0

We wish to consider the spectral properties of this function over all time, i.e.
−∞ < t < ∞, over which the function is not periodic. Such a signal has many
applications, e.g. a finite wave packet in quantum mechanics, or electronic signal
processing.

-30 -20 -10 0 10 20 30

-1.0

-0.5

0.0

0.5

1.0

Finite wave train with w0 = 1 and N = 5 plotted as a function of t. Wave is
therefore clipped for |t| > 5π.
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Fourier Transform of a Finite Wave Train
Let us examine the Fourier Transform Eq. (5.9)

F [f(t)] = g(ω) =
1√
2π

∫ ∞

−∞
ds f(s) eiωs

of the finite wave train just defined:

f(t) =

{
sinω0t for |t| ≤ Nπ/ω0

0 for |t| > Nπ/ω0.

The limits of integration can simply be changed to ±Nπ/ω0. In addition, we use

sin(ω0t) = − i

2
[exp(iω0t)− exp(−iω0t)]

to yield

g(ω) = − i

2
√
2π

∫ Nπ/ω0

−Nπ/ω0

ds {exp[i(ω + ω0)s]− exp[i(ω − ω0)s]} .

Integration then gives,

g(ω) = − i

2
√
2π

{[
exp[i(ω + ω0)s]

i(ω + ω0)

]Nπ/ω0

−Nπ/ω0

−
[
exp[i(ω − ω0)s]

i(ω − ω0)

]Nπ/ω0

−Nπ/ω0

}
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Fourier Transform of a Finite Wave Train
Using Euler’s formula to write the exponentials in terms of sines and cosines, and
noting that only the odd components of the exponentials contribute, we find

g(ω) = − i√
2π

[
sin[(ω + ω0)Nπ/ω0]

ω + ω0
− sin[(ω − ω0)Nπ/ω0]

ω − ω0

]
.

This function is purely imaginary. If we had chosen a cosine finite wave train, the
Fourier transform would have been purely real.

For the spectral properties of f(t) we are concerned with the Modulus of the
Fourier transform (see energy spectral density, and Parseval’s theorem later), or
the square of

−ig(ω) =
π

ω0

√
π

2

[
δN

(
π

ω0
(ω − ω0)

)
− δN

(
π

ω0
(ω + ω0)

)]
.

which is itself real, and is plotted on the next slide for two values of N. Here, from
Eq. (5.6), we recognise the delta distribution sequence in ω - space

δN (ω) =
1

2π

∫ N

−N
exp(iωt) dt =

sinNω

πω
,
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Finite Wave Train - pulse length and frequency spread
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� The shorter the pulse (smaller N , i.e. less periodic-like) the wider the
frequency distribution. For ω > 0, large ω0, and large N,

−ig(ω) ≈ π

ω0

√
π

2
δN

(
π

ω0
(ω − ω0)

)
=

1√
2π

sin[(ω − ω0)Nπ/ω0]

ω − ω0

� The longer the pulse (large N , i.e. approaching periodic), the narrower
the frequency distribution.
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Finite Wave Train - pulse length and frequency spread

Thus, we have seen that there is an inverse relationship
between sinusoidal pulse length and frequency spread.

� This relationship is a fundamental property of finite wave
distributions: the precision with which a signal can be identified
as a specific frequency depends on the pulse length.
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Notes

Fourier Integral of Finite Wave Train: For obtaining the Fourier integral
representation of the finite wave train, we apply an inverse Fourier transform
to g(ω) according to Eq. (5.8), i.e.

f(t) = F−1[g] =
1√
2π

∫ ∞

−∞
dω e−iωtg(ω) =

1√
2π

∫ ∞

−∞
dW

ω0

π
g(W ) exp[−iWω0t/π]

where we have assumed a change of variable W = πω/ω0. Substituting for g in
terms of W then clearly gives,

f(t) =
i

2π

∫ ∞

−∞
dW exp[−iWω0t/π]

(
sin[(W − π)N ]

W − π
− sin[(W + π)N ]

W + π

)
.

We now have a Fourier integral representation of the finite wave train. The
integral representation defines f(t), in a continuous manner, for t ≤ Nπ/ω0, and
t > Nπ/ω0.

It is left as an exercise to show that the integral representation corresponds to
the originally defined finite wave train f(t) (result obtained e.g. by calculus of
residues). However, in the limit N → ∞, integration is trivial. Using the definition
of the sequence of Eq. (5.5), i.e. δN (x) = (sinNx)/(πx):

f(t) =
i

2

∫ ∞

−∞
dW exp[−iWω0t/π] (δN (W − π)− δN (W + π)) .

Thus, in the limit N → ∞, we have from the definition of the distribution for the
Dirac delta given in Eq. (5.3),

lim
N→∞

f(t) =
i

2
[exp(−iω0t)− exp(iω0t)] = sin(ω0t).



Important Fourier Transforms: methods to obtain them
We now attempt to obtain the Fourier Transform F [f ] of the Gaussian function
f(t) = exp(−at2), with a real, a > 0. Hence, from the definition of Eq. (5.9), we
have

F [f(t)] = g(ω) =
1√
2π

∫ ∞

−∞
ds e−as2 eiωs

An analytic treatment can be pursued by completing the square in the exponent:

−as2 + iωs = −a

(
s− iω

2a

)2

− ω2

4a
= −ar2 − ω2

4a
with r(s) = s− iω

2a
.

Hence, changing integration variable to r, gives,

g(ω) = lim
S→∞

1√
2π

e−ω2/4a

∫ R(S)

R(−S)
dr e−ar2 ,

where R(S) = S − iω/2a, i.e. for ω > 0 (ω < 0) the integration in r is a path
below (above) the real axis by iω/2a. So for ω > 0:

-S 0 S

R(-S) R(S)
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F.T. of a Gaussian

-S 0 S

R(-S) R(S)

The integral path can be written as

∫ R(S)

R(−S)
dr e−ar2 =

∫ S

−S
dr e−ar2 −

∮
C
dr e−ar2 −

∫ S

R(S)
dr e−ar2 −

∫ R(−S)

−S
dr e−ar2

where C is a closed clockwise path −S → S → R(S) → R(−S) → −S. The
integral over C vanishes because the integrand has no singularities contained in
the closed path. The third and fourth integrals on the right of the above are also
negligible for large S (consider argument of Gaussian). Taking S → ∞, we have

g(ω) =
1√
2π

e−ω2/4a

∫ ∞

−∞
dr e−ar2 =

1√
2a

exp

(
−ω2

4a

)
,

which is again a Gaussian, but in ω-space. The result is the same for ω < 0.

� Note once again that the width of the spectrum in frequency space depends
inversely on the pulse length in time.
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Fourier Transform of Unity
We now consider the Fourier Transform of unity:

F [1] = g(ω) =
1√
2π

∫ ∞

−∞
ds eiωs

Now, we have already seen an integral of this type earlier in the section on
sequences and distribution. In particular from Eq. (5.6) we have the sequence,

δn(ω) =
1

2π

∫ n

−n
ds exp(iωs).

Thus, the Fourier transform of unity is proportional to the delta function,

F [1] = lim
n→∞

√
2πδn(ω).

Consider now the inverse Fourier transform of a delta function in ω.
Making use of the identity

f = F−1[F [f ]]

and setting f(t) = 1 and F [f ] =
√
2πδ(ω), we therefore have

1 = F−1[
√
2πδ(ω)] =

1√
2π

∫ ∞

−∞
dωe−iωt

√
2πδ(ω)

We therefore find that,

F−1[δ(ω)] =
1√
2π

∫ ∞

−∞
dωe−iωtδ(ω) =

1√
2π

(5.10)
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Fourier Transform of a Delta function

Consider now the Fourier Transform of a delta function in time, i.e,

F [δ(t− a)] = g(ω) =
1√
2π

∫ ∞

−∞
ds eiωsδ(s− a)

From the basic definition of the delta function it therefore follows that,

F [δ(t− a)] =
1√
2π

eiωa,

and the special case a = 0 thus gives,

F [δ(t)] =
1√
2π

.

Hence, for the ultimately localised function in time, the Fourier transform is
completely delocalised in frequency; i.e. it has the same value for all ω.
Finally, again since f = F−1[F [f ]], then, applying inverse Fourier transform to
the above equation and rearranging,

F−1[1] =
√
2πδ(t) (5.11)
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Fourier Transform using Calculus of Residues
Functions that have singularities can often be transformed conveniently using
calculus of residues. Take for example

f(t) =
2α√
2π

1

α2 + t2
α > 0

The Fourier Transform can be written conveniently as a product of simple poles
via α2 + t2 = (t− iα)(t+ iα) :

g(ω) =
1

2π

∫ ∞

−∞
ds

2αeiωs

(s− iα)(s+ iα)

The integrand has two poles, s = iα with residue e−αω/i, and the other at
s = −iα with residue eαω/(−i). Integration along the real line can be continued
by forming a semicircular integration path in the complex plane (thus closing the
integral path) providing that the integrand is negligible along the additional arc.
Hence the sign of ω determines where we are permitted to place the arc.

+i

-i
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Fourier Transform using Calculus of Residues

If ω > 0 we must therefore take a semicircle in the upper plane. The closed
contour in this case is anticlockwise (conventional) and encloses the single pole
s = iα. Recalling that the integral is 2πi multiplied by the sum of enclosed
residues clearly yields

g(ω) =
1

2π
(2πi)

e−αω

i
(ω > 0)

If ω < 0, we must take a semicircle in the lower plane. The closed contour is
contour clockwise (unconventional), which means that the integral will be −2πi
multiplied by the sum of residues. The enclosed pole is at s = −iα, giving,

g(ω) =
1

2π
(−2πi)

eαω

−i
(ω < 0)

Consequently, the Fourier Transform of 2α/[
√
2π(α2 + t2)] is succinctly:

F
[

2α√
2π

1

α2 + t2

]
= g(ω) = e−α|ω|
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Convenience of Fourier integral form

Finally, it is left as an exercise to show that the Fourier transform of f(t) = e−α|t|
is intuitively (note the analogue with the last calculation):

F
[
e−α|t|

]
= g(ω) =

2α√
2π

1

α2 + ω2

Now, from the simple relation

f = F−1[F [f ]] = F−1[g(ω)],

we can obtain e−α|t| in integral form:

e−α|t| =
1√
2π

∫ ∞

−∞
dωe−iωt

(
2α√
2π

1

α2 + ω2

)
=

α

π

∫ ∞

−∞
dω

e−iωt

α2 + ω2
.

This may seem a cumbersome way of defining f(t) = e−α|t|. However, the integral
form of f(t) involves no absolute value signs, and thus may be a convenient
starting point for analytical applications.

278 / 323



Fourier and Inverse Fourier Transforms in 3D Space
So far we have considered transformations from a one dimensional variable to
another one dimensional variable. Such transformations are obviously useful to
move from the time domain to frequency (and back).

Instead of time-frequency transformations, We may wish to transform from
Euclidian space �r to wave vector space �k. Typically these transformations will be
three-dimensional. Similarly to the procedure that led to Eq. (5.7), we can write
(exercise) the Fourier integral of f(�r) as

f(�r) =
1

(2π)3/2

∫
R3

d3k e−i�k·�rg(�k) (5.12)

with

g(�k) =
1

(2π)3/2

∫
R3

d3s ei
�k·�sf(�s). (5.13)

The second of these equations (Eq. (5.13)) is the Fourier transform of f(�r), i.e.

g(�k) = F [f(�r)]. Integration is over all 3D space.

The first of these equations Eq. (5.12) is the inverse Fourier transform of g(�k),
which provides us with a Fourier integral representation of the original
function f . It is an expansion of a function f(�r) in a continuum of plane waves,

with g(�k) related to the amplitude of the wave exp(i�k · �r). Integration over all 3D
(transform) space.

[Note that the cube of
√
2π arrives due to normalising the triple integral].

279 / 323



Elementary Properties of Fourier Transforms
The following properties will be particularly useful for solving PDEs. The
properties are applied to 3D transforms, but can be intuitively adapted to 1D and
2D transforms etc. Given the known function f(�r) with (known) Fourier

transform F [f(�r)] = g(�k), the following properties hold

F
[
f(�r − �R)

]
= ei

�R·�kg(�k), (5.14)

F [f(α�r)] =
1

|α|3 g(α
−1�k), α > 0 (5.15)

F [f(−�r)] = g(−�k), (5.16)

F [f�(−�r)] = g�(�k), (5.17)

F
[
�∇f(�r)

]
= −i�kg(�k), (5.18)

F [∇2f(�r)
]

= −k2g(�k). (5.19)

Here we recall that

g(�k) = F [f(�r)] =
1

(2π)3/2

∫
R3

d3s ei
�k·�sf(�s)

[Note that for a 1D transform, the denominator of Eq. (5.15) is simply α1, which
follows from the number of nested integrals being 1].
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Elementary Properties of Fourier Transforms

Less well known perhaps is the Fourier Transform of an integral.
Given the one dimensional Fourier Transform g(k) = F [f(x)] of f(x),
the following integral property of the Fourier transform holds,

F
[∫ x

−∞
ds f(s)

]
= −g(k)

ik
+ π g(k = 0) δ(k). (5.20)
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Fourier Convolution
The convolution theorem is a generalisation of Parseval’s theorem. It is
useful for a number of applications such as signal processing, and for solving PDEs.

Let us define the convolution of two functions U(r) and V (r) over the interval in r
[−∞,∞] as

(V ∗ U)(r) =
1√
2π

∫ ∞

−∞
ds U(s)V (r − s). (5.21)

The corresponding 3D definition for functions U(�r) and V (�r) with �r a 3D vector is

(V ∗ U)(�r) =
1

(2π)3/2

∫
R3

d3s U(�s)V (�r − �s). (5.22)

It is straightforward to demonstrate [exercise] the 1st convolution theorem
(note analogy with 1st convolution theorem for 2L periodic functions, Eq. (4.14)):

∫ ∞

−∞
ds U(s)V (r − s) =

∫ ∞

−∞
dk Û(k)V̂ (k)e−ikr, Û(k) = F [U(r)], V̂ (k) = F [V (r)].

(5.23)
Similarly, the 3D version of the 1st convolution theorem is

∫
R3

d3s U(�s)V (�r − �s) =

∫
R3

d3k Û(�k)V̂ (�k)e−i�k·�r, Û(�k) = F [U(�r)], V̂ (�k) = F [V (�r)].

(5.24)
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Parseval’s Theorem
We remind ourselves that we have already seen Parseval’s theorem in the Fourier
series section of this course (Eq. (4.15)) for periodic functions. We can extend
Parseval’s theorem to include non-periodic functions over the infinite real domain
via the first convolution theorem.
On taking the 1D result of Eq.(5.23), and choosing the special case r = 0:∫ ∞

−∞
ds U(s)V (−s) =

∫ ∞

−∞
dk Û(k)V̂ (k), Û(k) = F [U(r)], V̂ (k) = F [V (r)].

Defining V (−r) = W �(r), with W � the complex conjugate of W , we obtain∫ ∞

−∞
ds U(s)W �(s) =

∫ ∞

−∞
dk Û(k)F [W �(−r)](k).

Now, from Eq. (5.17), F [W �(−r)] = (F [W (r)])� = Ŵ �(�k), so that

∫ ∞

−∞
ds U(s)W �(s) =

∫ ∞

−∞
dk Û(k)Ŵ �(k), Û(k) = F [U(r)], Ŵ (k) = F [W (r)].

Or more succinctly using the scalar product notation introduced in the Hilbert
space section (assuming interval [−∞,∞] in r and k space, and a weight of unity):

〈W |U〉 =
〈
Ŵ |Û

〉
(5.25)
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Parseval’s Theorem, self-convolution and ESD

The energy spectral density (ESD) associated with Parseval’s theorem
arrives from from self-convolution. Hence, for the special case

W = U , one clearly obtains 〈U |U〉 =
〈
Û |Û

〉
, or

∫ ∞

−∞
ds U(s)U�(s) =

∫ ∞

−∞
dk Û(k)Û�(k), Û(k) = F [U(r)].

The energy spectral density (ESD, the decomposition of energy into
wavelengths) is Û(k)Û�(k) = |Û |2.
In the Fourier Series section of this course, the energy spectral density
was defined as being proportional to |cn|2, where cn were the
coefficients of the Fourier series.

The definition of ESD given in this section applies to non-periodic
functions which extend over the entire domain. It is widely used in
signal processing applications.
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ESD of a finite wave train

We may wish to know the ESD of the earlier considered Finite Wave
Train. This time we define the ‘wave-packet’ along x space instead of
time,

U(x) =

{
sin k0x for |x| ≤ Nπ/k0
0 for |x| > Nπ/k0

As we have seen, the Fourier transform of this function (in terms of
k instead of ω) is

Û(k) = − i√
2π

[
sin[(k + k0)Nπ/k0]

k + k0
− sin[(k − k0)Nπ/k0]

k − k0

]
. (5.26)

(this function will be used in the Schrodinger equation PDE problem
later). Hence the ESD of the Finite Wave Train is thus

|Û |2 =
1

2π

[
sin[(k + k0)Nπ/k0]

k + k0
− sin[(k − k0)Nπ/k0]

k − k0

]2
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ESD Finite Wave Train
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The ESD exhibits the following property: the longer the pulse (large N , i.e. more
periodic-like), the narrower the distribution.
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Appropriate PDE problems using Fourier Transforms
� In the Fourier series part of this course, we solved PDEs where boundary

conditions were placed at the ends of a finite interval, e.g. over interval
[0, Lx]. Problems with solutions bounded within a finite interval could be
treated using a half range sine or cosine series representation of initial
conditions, and the solution. Examining beyond the interval of interest, one
observes periodicity (period 2Lx).

� For problems where the solution is required over an unbounded region of
space (where BC are not applied to the boundary of a finite interval), the
solution will not generally be periodic, and as such we cannot resort to
Fourier series techniques to solve the PDE. Fourier Transforms can be
applied for such unbounded problems.

� Consider e.g. the finite wave train, defined in terms of space instead of time:

f(x) =

{
sin k0x for |x| ≤ Nπ/k0
0 for |x| > Nπ/k0

This waveform is not periodic over an interval [−Lx, Lx] when Lx > Nπ/k0.
� We will later set f(x) above to be the initial distribution for the Schrödinger

equation problem. The domain for solving the PDE is set to −∞ < x < ∞:
the wave will disperse eventually over all x, the solution always being
non-periodic.

� Other problems that we will consider are the wave equation, the heat
equation problem and Laplace equation (2D), each having solutions defined
over the infinite real axis.

� Convolution enables us to conveniently fold in the initial conditions or
boundary conditions.
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Solving wave equation using F.T. and convolution
We attempt to solve the one dimensional wave equation in an infinite system using
Fourier transforms. We choose also to use convolution in order to unify the way
we solve the PDE’s considered in this course.

∂2ψ(x, t)

∂t2
= c2

∂2ψ(x, t)

∂x2
, ψ0(x) = ψ(x, t = 0), ν0(x) =

∂ψ

∂t

∣∣∣∣
t=0

Applying Fourier transforms in x on both sides:

∫ ∞

−∞
ds eiks

∂2ψ(s, t)

∂t2
= c2

∫ ∞

−∞
ds eiks

∂2ψ(s, t)

∂s2

Denoting again F [ψ] = ψ̂, and using the property F
[
�∇2ψ

]
= −k2F [ψ] of Eq

(5.19), yields an ODE in k-space with independent variable t:

∂2ψ̂(k, t)

∂t2
= −c2k2ψ̂(k, t)

The general solution to this harmonic oscillator equation is:

ψ̂ = Â(k)eikct + B̂(k)e−ikct

with Â(k) = F [A], where A = A(ψ0(x), ν0(x)). Similarly for B̂.
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Solving wave equation using F.T. and convolution

It is important to now notice the initial conditions in Fourier transform (k) space
are:

ψ̂0(k) = ψ̂(t = 0) and ν̂0 =
∂ψ̂

∂t

∣∣∣∣∣
t=0

.

Since ψ̂0 = Â+ B̂ and ν̂0 = ikc(Â− B̂), then

Â =
1

2
ψ̂0 − iν̂0

2kc
and B̂ =

1

2
ψ̂0 +

iν̂0

2kc

We now apply inverse Fourier transforms on ψ̂ = Â(k)eikct + B̂(k)e−ikct to obtain
the solution:

ψ(x, t) = F−1[ψ̂] =
1√
2π

∫ ∞

−∞
dk e−ikxψ̂ = ψf (x, t) + ψb(x, t)

where the forward and backward solutions are respectively

ψf =
1√
2π

∫ ∞

−∞
dk Â(k)e−ikxeikct and ψb =

1√
2π

∫ ∞

−∞
dk B̂(k)e−ikxe−ikct
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Convenient deployment of Convolution
Examine e.g. the forward solution ψf =

1√
2π

∫ ∞

−∞
dk Â(k)eikcte−ikx and

compare it with the convolution form (Eq. (5.23)):∫ ∞

−∞
ds U(s)V (x− s) =

∫ ∞

−∞
dk Û(k)V̂ (k)e−ikx,

where we can take Û(k) = Â(k) and V̂ (k) = eikct. Thus, U(x) = A(x) and
V (x) = F−1[eikct], respectively i.e.

U(x) =
ψ0(x)

2
+ F−1

[
ν̂0(k)

2ikc

]
and V (x) =

1√
2π

lim
n→∞

∫ n

−n
dk eikcte−ikx

Now, from definition of the delta sequence, we have, V (x) =
√
2π lim

n→∞ δn(ct− x).

We can obtain U(x) by taking inverse transforms of the integral relation of Eq.
(5.20), i.e. taking inverse transforms of

ν̂0

ik
= −F

[∫ x

−∞
ds ν0(s)

]
+ πν̂0(k = 0) δ(k). (5.27)

Using F−1[δ(k)] = 1/
√
2π, yields,

U(x) =
1

2

[
ψ0(x)− 1

c

(∫ x

−∞
ds ν0(s)−

√
π

2
ν̂0(k = 0)

)]
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Solving wave equation using F.T. and convolution

ψf =
1√
2π

∫ ∞

−∞
dk Û(k)V̂ (k)e−ikx

=
1√
2π

∫ ∞

−∞
ds U(s)V (x− s)

=
1√
2π

∫ ∞

−∞
ds U(s) lim

n→∞
√
2πδn[ct− (x− s)]

=

∫ ∞

−∞
ds U(s)δ[s− (x− ct)]

= U(x− ct)

=
1

2

[
ψ0(x− ct)− 1

c

(∫ x−ct

−∞
ds ν0(s)−

√
π

2
ν̂0(k = 0)

)]
.

We obtain a similar solution for the backward solution. The general solution for a
wave in a one dimensional system is

ψ(x, t) = ψf + ψb =
1

2

[
ψ0(x− ct) + ψ0(x+ ct) +

1

c

∫ x+ct

x−ct
ds ν0(s)

]
.

� By using convolution and Fourier transforms we have obtained d’Alembert’s
solution. We can solve apparently more difficult problems (problems without
finite BC) using similar techniques, such as Shrödinger equation problem,
heat equation, Laplace equation etc.
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Solving Schrödinger equation using Fourier transforms
and convolution

We now use Fourier transform and convolution techniques for solving the linear
homogeneous Schrödinger equation:

i�
∂ψ(x, t)

∂t
= − �

2

2m

∂2ψ(x, t)

∂x2
.

valid over the entire real axis −∞ < x < ∞, with initial displacement profile
ψ0(x) = ψ(x, t = 0).

Taking Fourier transforms on both sides, and using the derivative (or Laplacian)
property of F.T. (Eq. (5.19)) yields,(

i
∂

∂t
− �k2

2m

)
ψ̂(k, t) = 0

which has the solution in Fourier (k) - space:

ψ̂(k, t) = ψ̂0(k)e
−iω(k)t, with ω(k) =

�k2

2m
,

and ψ̂0(k) = F [ψ0(x)] is the Fourier transform of the initial displacement.

Note that ω(k) =
�k2

2m
is known as the dispersion relation. The dispersive

nature of the solution to the Schrödinger equation can already be seen via the
non-linear dependence of ω on k .
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Solving Schrödinger equation using convolution
With ψ̂(k, t) = ψ̂0(k)e

−iω(k)t, and ω(k) = �k2/(2m) solve for ψ(x, t) using inverse
F. T.:

ψ(x, t) = F−1[ψ̂(k, t)] =
1√
2π

∫ ∞

−∞
dk e−ikx ψ̂0(k) e

−i �k2t
2m

Choosing

Û(k) = ψ̂0(k) and V̂ (k) = exp(−iak2) with a =
�t

2m
,

the problem can be conveniently written in terms of a convolution,∫ ∞

−∞
dk Û(k)V̂ (k)e−ikx =

∫ ∞

−∞
ds U(s)V (x− s).

Hence,

ψ(x, t) =
1√
2π

∫ ∞

−∞
dsψ0(s)V (x− s) with V (x) = F−1[exp(−iak2)],

with ψ0(x) = F−1[Û(k)] the initial profile. It remains to find V (x) analytically
(exercise), to yield finally the general solution to the 1D homogeneous Schrödinger
equation:

ψ(x, t) =
1

2
√

iπa(t)

∫ ∞

−∞
dsψ0(s) exp

(
i
(x− s)2

4a(t)

)
.

The exponential is known as the propagator, since it propagates the wave from
it’s original form ψ0(x),
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Schrödinger equation initialised with finite wave train

Let us take the example of ψ being initially a variant of the finite wave train we
have seen before:

ψ0(x) =

{
eik0x for |x| ≤ Nπ/k0
0 for |x| > Nπ/k0

The product of the propagator and ψ0(s) can be written conveniently in terms of
a new variable z = (s− x+ 2k0a)/(2

√
a):

exp(ik0s) exp

(
i
(x− s)2

4a(t)

)
= exp

[
i(z2 + k0x− k20a)

]

Integrating with respect to this new variable (dz = ds/(2
√
a)), and defining the

frequency:

ω0 = ω(k0) =
�k20
2m

enables us to write the solution ψ(x, t) in the form:

ψ(x, t) =
1√
iπ

ei(k0x−ω0t)

∫ z2

z1

dz eiz
2

with z1 = −(k0x+Nπ − 2ω0t)/(2
√
ω0t) and z2 = −(k0x−Nπ − 2ω0t)/(2

√
ω0t)
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Schrödinger equation initialised with finite wave train
We now experience some more special functions. The solution ψ can be obtained
in terms of the Complex Error Function as,

Erfi(x) =
2√
π

∫ x

0
dz exp(iz2) (standard error function is Erf(x) =

2√
π

∫ x

0
dz exp(−z2)).

In order to be able to easily separate real and imaginary parts we use
exp(iz2) = cos z2 + i sin z2 (where we note that z2 is real for our application), and
define the Complex Error Function in terms of Fresnel Integrals S(x) and C(x)
[see Abramowitz and Stegun],

Erfi(x) =
√
2

[
C

(√
2

π
x

)
+ iS

(√
2

π
x

)]

where the Fresnel integrals (employed in optics applications) are defined as:

C(x) =

∫ x

0
dz cos

(π

2
z2
)

and S(x) =

∫ x

0
dz sin

(π

2
z2
)
.

It is now straightforward to obtain,

ψ(x, t) =

(
1− i

2

)
[C(y2)− C(y1) + i (S(y2)− S(y1))] exp(ik0x− iω0t)

where 1− i =
√

2/i and y1,2(x, t) = (2/π)1/2z1,2(x, t), i.e.

y1(x, t) = − 1√
2πω0t

(k0x+Nπ − 2ω0t) and y2(x, t) = − 1√
2πω0t

(k0x−Nπ − 2ω0t) .
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Notes

A relation contained in Abramowitz and Stegun relating the standard error
function and Fresnel integrals is easily obtained from the relations given here:

C(x) + iS(x) =
1 + i

2
Erf

(√
πx

1− i

2

)

where 1 + i =
√
2i.



Schrödinger equation initialised with finite wave train

ψ(x, t) =

(
1− i

2

)
[C(y2)− C(y1) + i (S(y2)− S(y1))] exp(ik0x− iω0t)

y1(x, t) = − 1√
2πω0t

(k0x+Nπ − 2ω0t) and y2(x, t) = − 1√
2πω0t

(k0x−Nπ − 2ω0t)

In the limit N → ∞, the initial wave ψ0(x) is periodic in x. Using that

lim
N→∞

S(N) = lim
N→∞

C(N) =
1

2
and lim

N→−∞
S(N) = lim

N→−∞
C(N) = −1/2,

we easily obtain that an initially periodic ψ (in x) simply propagates with phase
velocity ω0/k0, since

lim
N→∞

ψ(x, t) = exp(ik0x− iω0t).

The Schrödinger equation has a more exotic solution if the initial profile ψ0(x) is
not periodic (which will be the case for finite N). We can easily visualise the
dispersion by considering

|ψ|2 (x, t) = 1

2

[
(C(y2)− C(y1))

2 + (S(y2)− S(y1))
2
]
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Schrödinger equation initialised with finite wave train
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2πω0t
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The initial box shape (marking the square-amplitude of the wave over x) disperses
due to the k dependence in the group velocity vg = dω/dk = �k/m. The waveform
moves to the right at velocity vg(k = k0) = 2ω0/k0, where w0 = �k20/(2m).

Note that the energy (proportional to area under the curve of |ψ|2) is conserved.
This is in contrast to the very similar heat equation encountered in the exercises,

for which

∫ ∞

−∞
dxψ is instead conserved.
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Comparison of Heat Eqn and Schrodinger Eqn

∂ψ

∂t
= i

�

2m

∂2ψ

∂x2
.
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