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Content of this chapter

4. Fourier Series and Applications to PDEs
Representation of periodic functions, including those with
discontinuities
Half range series expansion representation and aperiodic functions
Operations on Fourier series and convergence
Power spectrum and Parseval’s identity
Summation of Fourier Series (tables or brute force)
Applications to homogeneous linear PDE’s
Types of PDE’s, and boundary conditions
Solving multidimensional problems with multiple orthogonal basis
Double Fourier series for wave equation over a rectangular domain
Using Fourier-Bessel series for wave equation in circular geometry
Using Fourier series to solve heat equation with Neumann B. C.
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Introduction to Fourier Series

I Fourier Series are a basic tool allowing us to represent any
wave-like function as a superposition of sine (and cosine) waves.
The common name for the field is Fourier Analysis.

I As well as being useful for spectral analysis, Fourier series assist
solving some types of ODE’s, and PDE’s, as we shall see.

I The basic idea is that any piecewise regular function (only a finite
number of finite discontinuities, or finite number of extremas) in
a specified interval [−π, π] can be represented by a sum of sine
and cosine functions, or equivalently complex exponentials.

I Fourier Series can be derived from the mathematical framework
developed in the Hilbert Space chapter of this course.
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Fourier Series as an Orthogonal Expansion of a Vector
We have seen at the start of the ”Hilbert Space” chapter that given an orthogonal
basis {φn}n=M,...,N of a Hilbert space V over C, the components xn ∈ C of an
abstract vector ψ on this basis are obtained by projection:

ψ =
N∑

n=M

xnφn =⇒ 〈φn|ψ〉 = 〈φn|
N∑

j=M

xjφj〉 =
N∑

j=M

xj 〈φn|φj〉︸ ︷︷ ︸
=0,ifn 6=j

= xn〈φn|φn〉

=⇒ xn =
〈φn|ψ〉
〈φn|φn〉

.

We define the Hilbert space L2
w([a, b]), with weight function w = 1 over [a, b] =

[−π, π], < f |g >=

∫ b

a
ds f∗g. The orthogonal basis is chosen such that

φn = exp(inx), and we allow M → −∞ and N →∞. Letting cn = xn, and
removing the abstract vector notation (in this case ψ is replaced by f(x)):

f(x) =
∞∑

n=−∞
cne

inx (4.1)

cn =
1

2π

∫ π

−π
ds f(s)e−ins (4.2)

The basis φn = exp(inx) is indeed orthogonal, but the basis is not orthonormal:

〈φn|φm〉 ≡
∫ b

a
dxφ∗nφm =

∫ π

−π
ds e−inse+ims = 2πδn,m
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Sturm Liouville Theory and Convergence in the Mean
The ODE

Dφ(x) = − d2

dx2
φ(x) = λφ(x),

on [−π, π], and x ∈ R, with e.g. periodic boundary conditions
φ(−π) = φ(π), φ′(−π) = φ′(π) is a Sturm-Liouville problem. These
boundary conditions ensure that the operator D is self adjoint with
respect to the product < f |g >.

As a consequence, the system has eigenfunctions exp(inx) which form
a complete set, with eigenfunctions of different eigenvalues n2

orthogonal (n integer), i.e.〈
einx|eimx

〉
= 2πδm,n

An orthonormal set of eigenfunctions can easily be established, and
these functions are φn/

√
〈φn|φn〉 = exp(inx)/

√
2π.

Since the eigenfunctions of a Sturm-Louiville problem forms
a complete orthogonal basis, the Fourier expansions of L2

functions will at least converge in the mean.
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Definition of series f(x) and Convergence in the Mean

An L2 function f(x) has the property that the integral exists:∫ π

−π
dx|f(x)|2 <∞.

Defining the following partial sum

fN (x) =

N∑
n=−N

cn einx, cn =
1

2π

∫ π

−π
ds f(s)e−ins,

convergence to the mean of the L2 function f(x) requires that

lim
N→∞

||f(x)− fN (x)|| ≡ lim
N→∞

[∫ π

−π
dx|f(x)− fN (x)|2

]1/2
= 0

(4.3)
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Example: representation of a continuous periodic
function

Let us take a Triangular wave, with period 2π, defined over [−π, π] as:

f(x) =

{
x+ π/2 for − π ≤ x ≤ 0
−x+ π/2 for 0 ≤ x ≤ π,
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f (x)

The Fourier Series is,

f(x) =
∞∑

n=−∞
cne

inx

with

cn =
1

2π

∫ π

−π
ds e−insf(s) =

1

2π

∫ 0

−π
ds e−ins

(
s+

π

2

)
+

1

2π

∫ π

0
ds e−ins

(
−s+

π

2

)
cn =

1

πn2

(
1− (−1)|n|

)
.
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Representation of a continuous periodic function
The series representation of this triangular wave is this:

f(x) =
2

π

(
+...+

exp(−i3x)

32
+

exp(−ix)

12
+

exp(ix)

12
+

exp(i3x)

32
+ ...+

)
=

1

π

∞∑
n=−∞

(1− (−1)|n|)
exp(inx)

n2

=
1

π

∞∑
n=−∞

(1− (−1)|n|)
cos(nx)

n2
=

2

π

∞∑
n=1

(1− (−1)|n|)
cos(nx)

n2

=
4

π

∞∑
p=1

cos[(2p− 1)x]

(2p− 1)2
.
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f_N(x),N=2

The figure fN (x) with N = 2 is a truncation of the infinite series, with 2N = 4
terms. Could we have chosen an alternative trigonometric polynomial of
degree 4 with smaller error?

195 / 323



Partial Summation of Fourier Series and best
approximation over interval

I Convergence to the mean of an L2 function f(x) requires that

lim
N→∞

||f(x)− fN (x)||2 = lim
N→∞

∫ π

−π
dx|f(x)− fN (x)|2 = 0

with

fN (x) =

N∑
n=−N

cn einx, cn =
1

2π

∫ π

−π
ds f(s)e−ins

I In practice f(x) is often represented by a finite number of
coefficients. We now ask if fN (x) provides the smallest error, or
whether another trigonometric polynomial

FN (x) =

N∑
n=−N

Cneinx,

with other coefficients Cn, could produce a smaller error. We aim
to minimise the global error

E[FN ] = ||f(x)−FN (x)||2
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Partial Summation of Fourier Series and best
approximation over interval

Exploiting the orthogonal properties of the expansion, a
straightforward exercise shows that

E[FN ] = 〈f |f〉 − 2π

N∑
n=−N

(
c?nCn + cnC?n − |Cn|2

)
.

This can be compared with the specific case E[fN ] where we take FN
to be fN , i.e. f truncated to N terms, so that we set Ck = ck, giving:

E[fN ] = 〈f |f〉 − 2π
N∑

n=−N
|cn|2.

The difference in error is

E[FN ]− E[fN ] = 2π

N∑
n=−N

|Cn − cn|2

Thus, E[fN ] ≤ E[FN ]. Equality iff Ck = ck and Fk = fk. This agrees
with the Hilbert Space section for orthogonal series: an Nth order
trigonometric polynomial most accurately represents f(x) if
it is a full Fourier series truncated at the Nth coefficient. 197 / 323



Representation of Discontinuous functions

-2 π -π π 2 π 3 π 4 π
x

-π

π

f (x)

I Consider the sawtooth wave above with period 2π. It is piecewise
continuous, but has discontinuity at x = x0 = π. Could this
function be represented by a Taylor series around some point
with an infinite convergence radius? No, such a power series will
converge only within a radius of convergence up to the nearest
singularity.

I But, a Fourier series uses information from the entire
expansion interval. Moreover, the function will converge in the
mean. For a function f(x) that is discontinuous at point x0,
it’s Fourier series is the arithmetic average of the left
and right approaches:

lim
N→∞

fN (x0) = lim
ε→0

[
f(x0 + ε) + f(x0 − ε)

2

]
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Representation of Discontinuous functions

-2 π -π π 2 π 3 π 4 π
x

-π

π

f (x)

The Fourier series representation of a sawtooth wave is represented by
the following in the limit N →∞:

fN (x) = 2

N∑
n=1

(−1)n+1 sinnx

n

The sawtooth wave is discontinuous at point x0 = π, but its Fourier
series is indeed the arithmetic average of the left and right approaches:

lim
N→∞

fN (x = π) = 0

= lim
ε→0

[
f(π + ε) + f(π − ε)

2

]
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2π periodic Fourier Series
The complex exponential Fourier series of Eqs. (4.1) and (4.2) is identical to:

f(x) =
a0

2
+
∞∑
n=1

an cosnx+
∞∑
n=1

bn sinnx, (4.4)

an =
1

π

∫ π

−π
ds f(s) cosns n = 0, 1, 2, . . . , (4.5)

bn =
1

π

∫ π

−π
ds f(s) sinns n = 0, 1, 2, . . . , (4.6)

The relations to the complex exponential coefficients are:

cn =
1

2
(an − ibn) and c−n =

1

2
(an + ibn), n ≥ 0. (4.7)

Fourier cosine series: For even functions f(−x) = f(x), ⇒ bn = 0:

f(x) =
a0

2
+
∞∑
n=1

an cosnx.

Fourier sine series: For odd functions f(−x) = −f(x), ⇒ an = 0:

f(x) =
∞∑
n=1

bn sinnx.
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Notes

A Fourier series defined in terms of sines and cosines is easily derived from
the exponential series:

f(x) =

∞∑
n=−∞

cne
inx =

∞∑
n=−∞

cn cosnx+
∞∑

n=−∞

icn sinnx

=

−1∑
n=−∞

cn cosnx+ c0 +
∞∑
n=1

cn cosnx+

−1∑
n=−∞

icn sinnx+
∞∑
n=1

icn sinnx

=

∞∑
n=1

(cn + c−n) cosnx+ c0 +
∞∑
n=1

i(cn − c−n) sinnx

=

∞∑
n=1

an cosnx+
a0
2

+

∞∑
n=1

bn sinnx

with a0 = 2c0, an = cn + c−n, bn = i(cn − c−n) where n > 0.

a0 =
2

2π

∫ π

−π
ds ei0sf(s) =

1

π

∫ π

−π
ds f(s)

an =
1

2π

∫ π

−π
ds (e−ins + eins)f(s) =

1

π

∫ π

−π
ds f(s) cosns

bn =
1

2π

∫ π

−π
ds i(e−ins − eins)f(s) =

1

π

∫ π

−π
ds f(s) sinns



Half range sine and cosine Fourier series
I For a function f(x) defined over the interval [0, π], we can represent f(x) as a

half range Fourier cosine series by extending f(x) over [−π, π] and
forcing it to be even f(−x) = f(x):

an =
1

π

(∫ 0

−π
ds f(−s) cosns+

∫ π

0
ds f(s) cosns

)
=

2

π

∫ π

0
ds f(s) cosns

I We can represent the same function as a half range Fourier sine series by
extending f(x) over [−π, π] and forcing it to be odd f(−x) = −f(x):

bn =
1

π

(
−
∫ 0

−π
ds f(−s) sinns+

∫ π

0
ds f(s) sinns

)
=

2

π

∫ π

0
ds f(s) sinns

Take the case of f(x) = sinx over interval [0, π]:

Fourier cosine series : f(x) ≡
a0

2
+
∞∑
n=1

an cosnx =
2

π
+
∞∑
p=1

4 cos 2px

π [1− (2p)2)]

Fourier sine series : f(x) ≡
∞∑
n=1

bn sinnx = sin(x)

-π π
x

-1.0

-0.5

0.5

1.0

Sin (x) in interval [0,π ]

cosine series

sine series
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Convergence consequences with piecewise discontinuity

-2 π -π π 2 π 3 π 4 π
x

-π

π

f (x)

The example of a Fourier representation of the sawtooth had to be
constructed by a Fourier sine series because the sawtooth function
was defined with period 2π, and because the sawtooth function is
purely odd. Using Eqs. (4.4) and (4.6) one can show (an exercise)
that

f(x) = 2

∞∑
n=1

(−1)n+1 sinnx

n
(4.8)

I The discontinuity in f(x) leads to the nth coefficient decreasing
as O(1/n). Convergence of the series is conditional only.
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Half range representation of aperiodic functions

-2 π -π π 2 π
x

-π

π

f (x)

Cos (5 terms

Sin (5 terms

f=x

I Over [0, π] the previous sine series represents f(x) = x.

I Within [0, π] we are free to use either a half range cosine
series or a half range sine series (or a combination) to
represent an aperiodic function. e.g with the cosine series:

f(x) =
π

2
−
∞∑
n=0

4

π

cos(2n+ 1)x

(2n+ 1)2

I The coefficients decrease as O(1/n2), so that the series converges
absolutely. This is true in general if there is not a discontinuity
in f(x), even if there are discontinuities in its derivatives.

Half range representation choice important e.g. for ODE’s and PDE’s.
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Local Accuracy of Fourier Series: Gibbs Phenomena

2.5 3.0 3.5
x

-π

π

f (x)

Sin (100 terms

Sin (20 terms

Sin (5 terms)

I Consider the Fourier representation of the sawtooth wave over
the full period. Since it is odd, a sine series is required, and we
know it is of the form of Eq. (4.8).

I The piecewise discontinuity causes slow convergence in the mean
as more coefficients are added. But, the magnitude of the local
error close to the discontinuity does not reduce with more terms.
The position of the maximum overshoot simply gets closer to the
discontinuity.

I The Gibb’s phenomenon indicates that a Fourier
representation may be highly unreliable for precise numerical
work, especially near a discontinuity.

I The phenomenon is not limited to Fourier series, it occurs for
other eigenfunctions too. Proof is reserved to additional reading.
For interested readers see e.g. section 19.3 in Arfken.
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Local Accuracy of Fourier Series: Gibbs Phenomena
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x
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Sine series f (x)=x

π

500 terms
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The maximum in f(x) occurs at x = xm. As seen the maximum is
larger than the correct value of the sawtooth amplitude π near the
singularity at x = x0. In the plots,

Location =
xm − x0
x0

and Error =
f(xm)− π

π
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Gibbs: Sine series f (x)=x
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Fourier expansion of functions with period 2L
I Up until this point, the interval for establishing the Fourier series has been

assumed [−π, π]. The resulting Fourier series are periodic over this interval.
However, it is convenient to be able to set the interval to [−L,L], especially
if the function that the series represents has wavelength 2L.

I For an interval [−L,L]:

f(x) =
∞∑

n=−∞
cneinπx/L. (4.9)

Or equivalently

f(x) =
a0

2
+
∞∑
n=1

an cos
nπx

L
+
∞∑
n=1

bn sin
nπx

L
(4.10)

The coefficients cn, a0, an and bn are related to f(x) through the following
definite integrals (subject to the requirement that they exist):

cn =
1

2L

∫ L

−L
ds f(s)e−inπs/L n = . . . ,−2,−1, 0, 1, 2, . . . , (4.11)

an =
1

L

∫ L

−L
ds f(s) cos

nπs

L
, n = 0, 1, 2, . . . , (4.12)

bn =
1

L

∫ L

−L
ds f(s) sin

nπs

L
, n = 1, 2, . . . , (4.13)
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Notes

For representing an aperiodic function f(x) defined over interval
[0, L] using half range series

To conveniently construct a cosine series representation of an aperiodic func-
tion f(x) defined over an arbitrary interval [0, L], we construct an even
function f(x) which is defined as f(x) = f(x) over interval [0, L], and
f(x) = f(−x) over [−L, 0]. For the series representation of f(x) one then
has bn = 0, while an will be obtained via Eq. (4.12). Clearly, integration is
required over only half the range of [−L,L], so that over [0, L]:

f(x) = f(x) =
a0
2

+
∞∑
n=1

an cos
nπx

L
with an =

2

L

∫ L

0

ds f(s) cos
nπs

L
.

To conveniently construct a sine series representation of an aperiodic function
f(x) defined over an arbitrary interval [0, L], we construct an odd function
f(x) which is defined as f(x) = f(x) over interval [0, L], and f(x) = −f(−x)
over [−L, 0]. For the series representation of f(x) one then has an = 0, while
bn will be obtained via Eq. (4.13). Clearly, integration is required over only
half the range of [−L,L], so that over [0, L]:

f(x) = f(x) =
∞∑
n=1

bn sin
nπx

L
with bn =

2

L

∫ L

0

ds f(s) sin
nπs

L
.



Notes

For representing an aperiodic function f(x) defined over arbitrary
interval [a, b] using half range series

To conveniently construct a cosine series representation of an aperiodic function f(x)
defined over an interval [a, b], we first define the interval [0, L], where L = b − a.
We construct an even function f(z) which is defined as f(z) = f(z) over [0, L], and
f(z) = f(−z) over [−L, 0], where z = x − a. For the series representation of f(z)
one then has bn = 0, while an will be obtained via Eq. (4.12). Clearly, integration
is required over only half the range of [−L,L], so that over [0, L]:

f(z) = f(z) =
a0

2
+
∞∑
n=1

an cos
nπz

L
with an =

2

L

∫ L

0
ds f(s) cos

nπs

L

Translation of resulting expansion back to x uses simply z = x− a.

To conveniently construct a sine series representation of an aperiodic function f(x)
defined over an interval [a, b], we first define the interval [0, L], where L = b − a.
We construct an odd function f(z) which is defined as f(z) = f(z) over [0, L], and
f(z) = −f(−z) over [−L, 0], where z = x− a. For the series representation of f(z)
one then has an = 0, while bn will be obtained via Eq. (4.13). Clearly, integration
is required over only half the range of [−L,L], so that over [0, L]:

f(z) = f(z) =
∞∑
n=1

bn sin
nπz

L
with bn =

2

L

∫ L

0
ds f(s) sin

nπs

L

Translation of resulting expansion back to x uses simply z = x− a.



Operations on Fourier Series and Convergence
Integration and differentiation operations on a Fourier series are
particularly important for PDE and ODE problems.

Integration of a Fourier series Eq. (4.10) yields improved
convergence, since the operation places n on the denominator of all
the sinusoidal terms:∫ x

x0

dx f(x) =
a0L

2π
(x−x0)+

∞∑
n=1

anL

nπ
sin
(nπx
L

)∣∣∣∣x
x0

−
∞∑
n=1

bnL

nπ
cos
(nπx
L

)∣∣∣∣x
x0

The Fourier series of the integral of f(x) may be convergent even
when the series of f(x) itself is not convergent.

Due to the secular contribution the actual Fourier series associated
with the integral above is in fact∫ x

x0

dx f(x)− a0L

2π
x
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Operations on Fourier Series and Convergence
I Term by term differentiation of a Fourier series is only

possible if the series is uniformally convergent.

I For example, differentiation of the sine series representation of
f(x) = x (Eq. (4.8)), is not convergent. While f(x)′ = 1, term by
term differentiation of the Fourier sin series of f(x) = x yields

d

dx
[sine series of f(x) = x] = 2

∞∑
n=1

(−1)n+1 cosnx.

which is not convergent (we should have chosen cosine
representation!).

I In general, for the Fourier series f(x) given by Eqs. (4.10) -
(4.12), we have the following

d

dx
f(x) = −

∞∑
n=1

nπan
L

sin
(nπx
L

)
+

∞∑
n=1

nπbn
L

cos
(nπx
L

)
.

However, as seen for the example above, one must be cautious
when differentiating Fourier series.
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Useful Elementary Properties of Fourier Series
Fourier Series is Linear. Consider h(x) = αf(x) + βg(x), with f(x) and g(x)
given by series

f(x) =
∞∑

n=−∞
fneinπx/L and g(x) =

∞∑
n=−∞

gneinπx/L,

with Eq. (4.11) defining fn or gn in terms of f or g. It is then straightforward to
obtain the linear relation:

h(x) =
∞∑

n=−∞
hneinπx/L with hn = αfn + βgn

1st Convolution Theorem

(f ∗ g)(x) ≡
∫ L

−L
ds g(s)f(x− s) = 2L

∞∑
n=−∞

fngneinπx/L (4.14)

2nd Convolution Theorem. It can be shown that the product h(x) = f(x)g(x)
is given by a convolution of the coefficients cn and dn:

h(x) =
∞∑

n=−∞
hneinπx/L with hn =

∞∑
m=−∞

gmfn−m
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Useful Elementary Properties of Fourier Series
Property for a Real function f(x) . For such a series

f(x) =

∞∑
n=−∞

fneinπx/L with the property,

f∗n =
1

2L

∫ L

−L
ds f(s)einπs/L = f−n

Translation Property. With f(x) =

∞∑
n=−∞

fneinπx/L, one can

translate as follows:

f(x− x0) =

∞∑
n=−∞

fneinπ(x−x0)/L

=
∞∑

n=−∞
f̃neinπx/L, f̃n = fne−inπx0/L
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Parseval’s Theorem and Power spectra
From the Hilbert space section of this course, we know that for two
orthogonal basis expansions

f(x) =

∞∑
n=−∞

fneinπx/L and g(x) =

∞∑
n=−∞

gneinπx/L

with

fn =
1

2L

∫ L

−L
ds f(s)e−inπs/L and gn =

1

2L

∫ L

−L
ds g(s)e−inπs/L

the scalar product of these series is (due to orthogonality) yields
Parseval’s identity:

〈f(s)|g(s)〉 ≡
∫ L

−L
ds g(s)f(s)∗ = 2L

∞∑
n=−∞

gnf
∗
n.

The result is a special case of the first convolution theorem (in Eq.
(4.14), replace f(x− s) with f(s)∗). Parseval’s identity can easily be
written in terms of the coefficients of equivalent sine/cosine
expansions.
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Parseval’s Theorem and Power spectra

A series exercise will show the special case g(x) = f(x), where it is
assumed that the series f(x) has uniform convergence. Using cn in
place of fn and gn (for contact with earlier notation, i.e. Eq. (4.11))
the result is:

〈f(s)|f(s)〉 = 2L

∞∑
n=−∞

|cn|2 ≡ L
[

1

2
|a0|2 +

∞∑
n=1

(
|an|2 + |bn|2

)]
(4.15)

It can be further shown that this relation holds for any L2 function,
but the proof is beyond the scope of this course.

The so called Energy Spectral Density (ESD) is a decomposition
of energy into frequencies, and is proportional to |cn|2.

The total energy associated with f(x) is proportional to 〈f(x)|f(x)〉.
It is a sum over the ESD, i.e. a sum of |cn|2 over all n.
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|cn|2 Energy Spectral Density (ESD) Examples
Sine series representation of f(x) = x over [0, π].
|cn|2 = |bn|2/4 ∼ 1/n2

-4 -2 2 4
n

0.2

0.4

0.6

0.8

1.0

ESD (f (x)=x) Sin Series

Cosine series representation of f(x) = x over [0, π].
|cn|2 = |an|2/4 ∼ 1/n4

-4 -2 2 4
n

0.5

1.0

1.5

2.0

2.5

ESD (f (x)=x) Cosine Series
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Spectrum width and f(x) localisation
Series representation of f(x) = cos 3x. |cn|2 only non-zero for n = 3.

-4 -2 2 4
n

0.05

0.10

0.15

0.20

0.25

ESD Cosine [3x]

Series representation of f(x) = δ(x). |cn|2 ∼ 1/n0. Infinite energy

because f(x) is not piecewise continuous,

∫
ds δ(s)2 =∞.

-4 -2 2 4
n

0.01

0.02

0.03

0.04

0.05

ESD Delta Function
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ESD in Forced Oscillations - 2nd order
non-homogeneous ODE

EMF conservation VL(t) + VR(t) + VC(t) = Vin(t) where Vin(t) is a
given voltage waveform from an oscillator and

VC(t) =
1

C

∫ t

−∞
I(t)dt , VL(t) = L

dI(t)

dt
and VR(t) = RI(t)

where I(t) is the current. Evidently we wish to measure the voltage
across the resistor Vout(t) = VR = I(t)R. Differentiating the EMF
conservation equation, the system of equations is identified in the
recognisable form of a second order non-homogeneous ODE for I(t):

L
d2I(t)

dt2
+R

dI(t)

dt
+

1

C
I(t) =

dVin(t)

dt
.
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ESD in Forced Oscillations

The driven LRC problem is equivalent to solving for the height y(t) of
a mass m hanging from a damped spring, and driven with external
force r(t):

m
d2y(t)

dt2
+ b

dy(t)

dt
+ ky(t) = r(t)

The natural frequency of the homogeneous system is ω0 =
√
k/m. We

take r(t) to be the triangular waveform above. Note that for the RLC
problem, with dVin/dt triangular, then Vin(t) is a square wave.

216 / 323



ESD in Forced Oscillations
We have already seen that the triangular wave form can be
represented by

r(t) = A
4

π

∞∑
n=1

cos(2n− 1)Ωt

(2n− 1)2
= A

4

π

[
cos Ωt

12
+

cos 3Ωt

32
+

cos 5Ωt

52
+ ..+

]
.

(4.16)
We wish to examine the transient solution (while the forced
oscillation is applied, but a long time after it was first applied, i.e.
t >> 1/b = 1/(2ν)). Since the system is damped (ν 6= 0), the solution
approaches the particular solution as t→∞. Since the ODE is linear
we can use the Method of undetermined coefficients. The
solution is therefore the superposition

y(t) = y1(t) + y3(t) + y5(t) + ...+, yn(t) = an cosnΩt+ bn sinnΩt

where each yn(t), and thus an and bn, is obtained by substituting y(t)
into the ODE (setting m = 1, b = 2ν):

d2yn(t)

dt2
+ 2ν

dyn(t)

dt
+ ω2

0yn(t) =
4A

n2π
cosnΩt (n = 1, 3, 5...) (4.17)
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ESD in Forced Oscillations
The result is

an =
4A

n2π

(
ω2
0 − n2Ω2

Dn

)
, bn = an

2ν nΩ

ω2
0 − n2Ω2

, Dn = (ω2
0−n2Ω2)2+(2νnΩ)2

For evaluating the ESD, we use Eq. (4.7), so that

|cn|2 =
1

4
(a2n + b2n) =

4A2

n4π2Dn

{
1

2
[1− (−1)n]

}
.

We now examine the results for ω0 = 5Ω and ν = Ω/10.

Since ν is small, and since ω0 = 5Ω, there is a near resonance (small
Dn) for n = 5. Thus, we expect the solution y(t) to be dominated by
y5, the natural oscillation of the homogeneous system (with frequency
ω0).

In addition, while the input r(t) is purely even, the output is not even
- it has small sine components bn.
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ESD in Forced Oscillations

Input Output

- π - π

2

π

2
π

Ωt

- π

2

π

2

r(t)/A

- π π
Ωt
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- 0.1

0.1

0.2

y(t) / (A Ω^2)
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n
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Sqrt[ESD y(t)]/ (A Ω^2)
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Sqrt[ESD r(t)] / A
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Reverse of Fourier Expansion: identifying closed form of
a Fourier Expansion

So far we have taken a known function in closed form, developed a
series expansion of it where possible, and in some cases used the
expansion to solve problems (e.g. the forced oscillation problem).
Sometimes we are presented with an expansion, and we may ask if
this series corresponds to a simple closed form associated with basic
mathematical functions. One way is to try to look it up on a table.
Another way is to try to solve this inverse problem by brute force if
possible, as shown in the example below.

I Consider the following series valid over [0, 2π]

∞∑
n=1

cosnx

n
≡ lim
r→1

∞∑
n=1

rn cosnx

n

where the series on the left is only conditionally convergent. It is
convenient to treat the series on the right which is absolutely
convergent for |r| < 1, and set r = 1 after a closed form is
obtained.
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Identifying closed form of a Fourier Expansion
I Using cosnx = (einx + e−inx)/2 and defining y = reix and
z = re−ix we have

∞∑
n=1

rn cosnx

n
=

1

2

∞∑
n=1

yn

n
+

1

2

∞∑
n=1

zn

n

I We now use the fact that that the Maclaurin expansion of

ln(1− ζ) is −
∞∑
n=1

ζn

n
, so that

∞∑
n=1

rn cosnx

n
= −1

2

[
ln(1− reix) + ln(1− re−ix)

]
.

I This is already in closed form. But it can be simplified further by
using identities ln(ab) = ln(a) + ln(b), (1/2) ln(x) = ln(x1/2) and
2[sin(x/2)]2 = 1− cosx. Setting r = 1 gives,

∞∑
n=1

cosnx

n
= − ln

(
2 sin

x

2

)
, (0 < x < 2π).

The convergence issue in the series expansion for r = 1 is
connected to singularity in the closed expression for x→ 0, 2π.
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Introduction to Solving PDEs with Fourier Series

I We will concentrate on homogenous linear PDEs with constant
coefficients and self-adjoint differential operators. We have
already seen that under these conditions, the solution can be
decomposed on the basis of the eigenmodes of the differential
operator.

I We will start by reviewing the 1D wave equation problem
outlined in the introduction to this course. It will be shown how
the approach can be extended to multi-dimensional problems.
We will see a reconciliation with the well known method of
”Separation of Variables”.

I In this section we examine problems where the solutions are
naturally composed of a Fourier series. We will see that initial
profiles with piecewise discontinuities are conveniently treated
with Fourier series methods

I In this section we will concentrate on problems with finite sized
systems (boundaries that don’t extend to infinity), usually where
the boundaries extend to a half or full period of a Fourier series.
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Homogeneous linear PDE’s with constant coefficients

1

u2
∂2ψ

∂t2
=
∂2ψ

∂x2
+
∂2ψ

∂y2
2D wave eqn.

0 =
∂2ψ

∂x2
+
∂2ψ

∂y2
2D Laplace eqn.

0 =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
3D Laplace eqn.

1

K2

∂ψ

∂t
=
∂2ψ

∂x2
1D heat eqn.

−i2m
~
∂ψ

∂t
=
∂2ψ

∂x2
1D hom. linear Schrödinger eqn.

The RHS of all these PDEs is the Laplacian −D. In general the
totality of solutions to a PDE is very large. For example, the
following are entirely different solutions of the 2D Laplace eqn:

ψ = x2 − y2, ψ = ex cos y, ψ = sinx cosh y, ψ = ln(x2 + y2)

A unique solution will be determined via boundary conditions, and
for a time dependent problem the initial conditions.
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Some Common Types Of PDE Boundary Conditions

y

x

L

0 M

Dirichlet Boundary Value Problem (BVP)

y

x

L

0 M

Neumann BVP

tt

xx00 MM

Initial Value Problem (IVP) with 
Dirichlet Boundary Conditions
Initial Value Problem (IVP) with 
Dirichlet Boundary Conditions

tt

xx00 MM

IVP with Neumann Boundary ConditionsIVP with Neumann Boundary Conditions
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Notes

The figures on the left are typical of Laplace equation problem. Sometimes
the boundary values are set as constant. The boundary value problems can
be a combination of Dirichlet and Neumann; such problems are often called
mixed problems.

For initial value problem figures on the right, clearly the required number

of initial conditions at t = 0 is determined by the order of the highest time

derivative in the PDE, e.g. for a wave equation we require two [ψ(t = 0), and

∂ψ(t = 0)/∂t, and for the heat equation or Schrödinger equation we require

only one e.g. ψ(t = 0)].



Solving the 1D Wave Equation by constructing an
orthogonal basis

We return to our original system of a string of length L attached at
both ends. Our goal is to find the solution of the wave equation as
outlined first in Eq. (1.3), i.e.

∂2ψ(x, t)

∂t2
= u2

∂2ψ(x, t)

∂x2
,

verifying for example the Dirichlet-type boundary conditions, Eq.
(1.4):

ψ(x = 0, t) = 0, and ψ(x = L, t) = 0,

as well as the initial, given transverse displacement ψ0(x) and velocity
ν0(x), Eq. (1.5):

ψ(x, t = 0) = ψ0(x), and
∂ψ

∂t
(x, t = 0) = ν0(x).
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I We define the differential operator D = −d2/dx2 which acts on
the function ψ(x).

I We then attempt to find eigenfunctions of D, i.e. φ(x) 6= 0 for
which there exists a scalar λ such that:

Dφ(x) = − d2

dx2
φ(x) = λφ(x),

together with the boundary conditions φ(x = 0) = φ(x = L) = 0.

I We have already seen that D only takes on strictly positive
eigenvalues, λ > 0. We identify these positive eigenvalues, by
setting λ = κ2, κ > 0:

d2

dx2
φ(x) = −κ2φ(x).

I which has general solution φ(x) = A sin(κx) +B cos(κx), but
applying boundary conditions (ψ and thus φ have Dirichlet B.C.)
give:

φk(x) = sin(κkx) = sin(k
π

L
x) with k ∈ N?.

as eigenfunctions of the operator D wrt. to the eigenvalue
λk = κ2k
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Having identified a basis {φk(x)}k∈N? of eigenfunctions of D, it becomes
straightforward to solve the continuous wave equation:

∂2ψ(x, t)

∂t2
= u2

∂2ψ(x, t)

∂x2
= −u2Dψ(x, t). (4.18)

By decomposing the solution ψ(x, t) on this basis [note time dependence of
coefficients ck(t)]:

ψ(x, t) =

+∞∑
k=1

ck(t)φk(x),

which is then inserted in (4.18), one obtains using Dφk(x) = λkφk(x), λk = κ2k:

+∞∑
k=1

d2ck(t)

dt2
φk(x) = −u2

+∞∑
k=1

ck(t)Dφk(x) =

+∞∑
k=1

−(κku)2ck(t)φk(x), (4.19)

As {φk(x)} forms a basis, the coefficients of the left and right hand side of (4.19)
must be equal:

d2

dt2
ck(t) = −(κku)2 ck(t) = −ω2

k ck(t). (4.20)

This is the equation of an harmonic oscillator with frequency ωk = uκk, which is
identified as the eigenfrequency of the eigenmode of vibration φk(x).
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The solution to (4.20) is given by:

ck(t) = ck(0) cos(ωkt) +
ċk(0)

ωk
sin(ωkt),

where ck(0) and ċk(0) are the Fourier coefficients on the basis {φk(x)} of the
initial displacement velocity fields ψ0(x) and ν0(x) respectively [see initial conds.
(1.5)]. For example, to obtain the {ck(0)}:

ψ0(x) =

+∞∑
k=0

ck(0)φk(x) ⇐⇒ ck(0) =
〈φk(x)|ψ0(x)〉
〈φk(x)|φk(x)〉

=

∫ L
0 dxφk(x)ψ0(x)∫ L
0 dxφk(x)φk(x)

.

Expliciting φk(x) = sin(k
π

L
x), this same relation takes on the familiar form of a

half-range Fourier sine series:

ψ0(x) =

+∞∑
k=0

ck(0) sin(k
π

L
x) ⇐⇒ ck(0) =

2

L

∫ L

0
dx sin(k

π

L
x)ψ0(x).

The general solution to (4.18) can now be written as a superposition of
eigenmodes of vibrations:

ψ(x, t) =

+∞∑
k=1

[
ck(0) cos(ωkt) +

ċk(0)

ωk
sin(ωkt)

]
sin(k

π

L
x) where, ωk = u

kπ

L

Each eigenmode of vibration ck(t)φk(x) is a standing wave with frequency ωk.
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Fourier series representation of initial conditions for
solution to PDEs

Let us continue to work with the 1D wave equation, but apply it to a
problem where the initial distribution is piecewise continuous. The
application is that of a plucked guitar string.

0 L

psi_0(x)

x

A

The initial distribution of the wave is assumed triangular, i.e.
ψ(t = 0, x) = ψ0(x) as above. In addition, we assume that the initial
velocity of the wave is zero, i.e. ν0(x) = 0 for any x.

For this Dirichlet problem [ψ(t, x = 0) = 0 and ψ(t, x = L) = 0] the
triangular wave must be represented by a sine series (we will see why
later):

ψ0(x) =

∞∑
k=1

8A

k2π2
sin

kπ

2
sin

kπx

L
=

∞∑
k=1

8A(−1)k−1

(2k − 1)2π2
sin

(2k − 1)πx

L
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From the earlier results:

ψ(x, t) =

+∞∑
k=1

[
ck(0) cos(ωkt) +

ċk(0)

ωk
sin(ωkt)

]
sin(k

π

L
x) where, ωk = u

kπ

L
,

ψ0(x) =

+∞∑
k=1

ck(0) sin(k
π

L
x) and ψ0(x) =

∞∑
k=1

8A

k2π2
sin

kπ

2
sin

kπx

L

giving ck(0) = [8A/(k2π2)] sin(kπ/2). Also, ν0(x) = 0 yields ċk(0) = 0:

ψ(x, t) =

+∞∑
k=1

[
8A

k2π2
sin

kπ

2
cos(ωkt)

]
sin(k

π

L
x) or

ψ(x, t) =

+∞∑
k=1

[
8A(−1)k−1

(2k − 1)2π2
cos
(

(2k − 1)
π

L
ut
)]

sin
(

(2k − 1)
π

L
x
)
.

Result is a standing wave. Limiting to 20 terms in series, taking A = 1 and L = π:

π
x

-1
0
1

ψ(x,t=0)

π
x

-1
0
1

ψ(x,t=L/4u)

π
x

-1
0
1

ψ(x,t=3L/4u)

π
x

-1
0
1

ψ(x,t=L/u)
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Notes

Generalised solution for piecewise continuous initial conditions, or
boundary conditions
A word of caution when applying boundary and initial conditions.

• The triangular wave for the initial distribution ψ(t = 0, x) = ψ0(x)
yields a singularity in the wave equation locally, since ∂2ψ0/∂x

2 does
not exist at x = L/2. As seen, this differential singularity propagates
into the solution domain.

• This singularity remains in the second derivative of the expansion.
Term by term differentiation of this expansion can be undertaken
(derivatives exist). But, the series representation of ∂2ψ0/∂x

2 does not
converge at x = L/2 for. Clearly, the following type of series does not
converge:

∞∑
k=1

(−1)k−1 1

k0

• However, providing the boundary and initial conditions of ψ are
piecewise continuous (e.g. at x = L/2), a solution exists everywhere
except locally where the derivatives of ψ are singular. Such solutions
are known as generalised solutions.



Multi-dimensional problems
I All the higher dimensional PDEs listed at the start of this section involved a

Laplacian written in cartesian coordinates.
I We therefore expect solutions that are sinusoidal in multi-dimensions.
I We now try to write down a Fourier series of such a solution.

First Fourier decompose the solution ψ(x, y, z, t) in x over the range [−Lx, Lx]

ψ(x, y, z, t) =
∞∑

k=−∞
ck(y, z, t) exp

[
ikπx

Lx

]
. (4.21)

Applying

∫ Lx

−Lx
dx exp(−ikπx/Lx) to both sides, and rearranging:

ck(y, z, t) =
1

2Lx

∫ Lx

−Lx
dxψ(x, y, z, t) exp

[
−
ikπx

Lx

]
. (4.22)

We next Fourier analyse ck in y over the interval [−Ly , Ly ]:

ck(y, z, t) =
∞∑

l=−∞
ck,l(z, t) exp

[
ilπy

Ly

]
. (4.23)

Applying

∫ Ly

−Ly
dy exp(−ilπy/Ly) to both sides, and rearranging:

ck,l(z, t) =
1

2Ly

∫ Ly

−Ly
dy ck(y, z, t) exp

[
−
ilπy

Ly

]
.
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Multi-dimensional problems

ck,l(z, t) =
1

2Ly

∫ Ly

−Ly
dy ck(y, z, t) exp

[
−
ilπy

Ly

]
Substituting Eq. (4.22) for ck(y, z, t) yields the double-Fourier coefficient

ck,l(z, t) =
1

4LxLy

∫ Lx

−Lx
dx

∫ Ly

−Ly
dy exp

[
−
ikπx

Lx

]
exp

[
−
ilπy

Ly

]
ψ(x, y, z, t)

(4.24)
which enters in the double complex exponential Fourier series (substitute Eq.
(4.23) into Eq. (4.21)):

ψ(x, y, z, t) =
∞∑

k=−∞

∞∑
l=−∞

ck,l(z, t) exp

[
ikπx

Lx

]
exp

[
ilπy

Ly

]
(4.25)

Clearly this process can be repeated to obtain a triple complex exponential
Fourier series:

ψ(x, y, z, t) =
∞∑

k=−∞

∞∑
l=−∞

∞∑
m=−∞

ck,l,m(t) exp

[
ikπx

Lx

]
exp

[
ilπy

Ly

]
exp

[
imπz

Lz

]
(4.26)

with

ck,l,m(t) =
1

8LxLyLz

∫ Lx

−Lx
dx

∫ Ly

−Ly
dy

∫ Lz

−Lz
dz exp

[
−
ikπx

Lx

]
exp

[
−
ilπy

Ly

]
exp

[
−
imπz

Lz

]
×ψ(x, y, z, t) (4.27)
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3D Wave eqn with periodicity over [−Lx, Lx], [−Ly, Ly],
[−Lz, Lz] u−2 ∂

2ψ

∂t2
−
(
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2

)
= 0

yields,

∞∑
k=−∞

∞∑
l=−∞

∞∑
m=−∞

exp

[
ikπx

Lx

]
exp

[
ilπy

Ly

]
exp

[
imπz

Lz

]
[
u−2 d

2

dt2
+

(
kπ

Lx

)2

+

(
lπ

Ly

)2

+

(
mπ

Lz

)2
]
ck,l,m(t) = 0.

The solution to this ODE equation is clearly,

ck,l,m(t) = ak,l,m(0) cos(ωk,l,mt)+bk,l,m(0) sin(ωk,l,mt), ωk,l,m = uπ

[
k2

L2
x

+
l2

L2
y

+
m2

L2
y

] 1
2

,

(4.28)
where, from Eq. (4.27), ck,l,m(t = 0) is related to ψ0(x, y, z) and ν0(x, y, z) as:

ak,l,m(0) =
1

8LxLyLz

∫ Lx

−Lx
dx

∫ Ly

−Ly
dy

∫ Lz

−Lz
dz exp

[
−
ikπx

Lx

]
exp

[
−
ilπy

Ly

]
exp

[
−
imπz

Lz

]
×ψ0(x, y, z),

bk,l,m(0) =
ω−1
k,l,m

8LxLyLz

∫ Lx

−Lx
dx

∫ Ly

−Ly
dy

∫ Lz

−Lz
dz exp

[
−
ikπx

Lx

]
exp

[
−
ilπy

Ly

]
exp

[
−
imπz

Lz

]
×ν0(x, y, z).
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Basis decomposition for a PDE solution
We have seen that the solution of the previous PDE is a
superposition of solutions with separated variables:

ψ =
∑
k

∑
l

∑
m

ψk,l,m, (4.29)

ψk,l,m = Fk,l,m(t)Gk(x)Hl(y)Im(z). (4.30)

I ψ is a decomposition of orthogonal basis Gk(x), Hl(y),
Im(z). For the wave equation with boundary conditions placed
on a cube (or a rectangle bounded by the intervals [−Lx, Lx],
[−Ly, Ly]), the orthogonal basis are complex exponentials.

I The multi-dimensional exponential Fourier series for ψ, although
correct, is not the most convenient basis for problems with
Dirichlet or Neumann boundary conditions on the restricted
cartesian domain [0, Lx], [0, Ly].

I For such problems with Dirichlet boundaries, ψ becomes a
half-range multiple sine series, while for such problems with
Neumann boundaries, ψ becomes a half range multiple cosine
series. Mixed problems can also be envisaged.
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B.C. placement, coordinates, and separation of variables
I The basis expansions for the solution depends entirely on the

geometry of the boundary. If one puts the boundary on a circle for a
problem with a 2D Laplacian (e.g. 2D wave eqn, 2D heat equation etc), the
most natural way to define the Laplacian is in polar coordinates. Having
done this, the basis for the problem are not standard multiple Fourier series.
As we will see, the basis in the radial harmonics are related to Bessel
functions.

I Likewise, for a problem with boundary conditions placed on a sphere
(e.g. the Schrödinger equation for a hydrogen atom), the Laplacian is
naturally written in spherical-polar coordinates, and it can be seen that
spherical harmonics are connected with Legendre polynomials.

I As accomplished earlier for the 3D wave equation, an approach to solving the
PDE is to substitute the appropriate multiple basis expansion into the PDE.

I An alternative way to solve the entire problem is to follow a 3-step approach
where the basis decomposition is selected automatically following our choice
of boundary conditions, and corresponding choice of coordinates, and to take
the solution in the form of Eqs. (4.29) and (4.30). Multiple Sturm-Liouville
problems are established from eigenmode equations associated with each
orientation of the differential operators Dx = −∂2/∂x2, Dy etc.

I Finally, note that the solution for the PDEs considered in this course have
solutions of the form of Eqs. (4.29) and (4.30) only because they are linear,
have coefficients compatible with a Sturm-Liouville problem, and due to
inherent symmetry are thus separable. Other more complicated PDE’s can
not solved this way.

235 / 323



Double Fourier Series solution to Wave in a rectangular
membrane

∂2ψ

∂t2
= u2

(
∂2ψ

∂x2
+
∂2ψ

∂y2

)
Boundary conditions

ψ(x = 0, x = Lx) = ψ(y = 0, y = Ly) = 0 (Dirichlet type)

or ψx(x = 0, x = Lx) = ψy(y = 0, y = Ly) = 0 (Neumann type).

Initial conditions

ψ(x, y, t = 0) = ψ0(x, y) arbitrary for the time being

ψt(x, y, t = 0) = ν0(x, y) arbitrary for the time being

we now go about solving the problem in three steps

1. Forming three sets of ODE’s for this 3 dimensional PDE (2D in
space plus time).

2. Solve ODEs satisfying the boundary conditions

3. Solve PDE satisfing the initial conditions
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Step 1: obtaining 3 ODEs
From Eq. (4.30) we have ψk,l = Fk,l(t)Gk(x)Hl(y), so that the wave equation
gives

GkHl(Fk,l)tt = u2Fk,l[Hl(Gk)xx +Gk(Hl)yy ]

where subscript t, x and y denote partial derivatives in those variables.
Rearranging gives,

(Fk,l)tt

u2Fk,l
=
Hl(Gk)xx +Gk(Hl)yy

GkHl
= −κ2k,l (4.31)

Now, notice that the RHS of the first equality is independent of time (and the
LHS is independent of x and y), so that κ is independent of time. We can thus
identify the first of the three sets of ODE’s:

(Fk,l)tt + ω2
k,lFk,l = 0 with ωk,l = uκk,l. (4.32)

Now, Hl(Gk)xx +Gk(Hl)yy = −κ2k,lGkHl which arises from Eq. (4.31) can be
rearranged to yield

(Gk)xx

Gk
= −

(Hl)yy + κ2k,lHl

Hl
= −δ2k.

The LHS of the first equality in the above is independent of y, and the RHS of the
first equality is independent of x, so that δ2k constant yields ODE’s, each being
a Sturm-Liouville problem with associated boundary conditions:

(Gk)xx + δ2kGk = 0 (4.33)

(Hl)yy + ν2l Hl = 0 where ν2l = κ2k,l − δ
2
k (4.34)
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Step 2: Solving ODEs satisfying boundary conditions
• The general solution to the spatial ODE in x, Eq. (4.33), is written in terms of
the basis over k, and the solution to the spatial ODE in y, (4.34) is written in
terms of the basis over l:

Gk = A cos(δkx) +B sin(δkx) and Hl = C cos(νly) +D sin(νly)

Choosing a Dirichlet BVP, ψ(x = 0) = 0 forces A = 0, and ψ(y = 0) = 0 forces
C = 0.

• The domain of the problem is over by 0 ≤ x ≤ Lx and 0 ≤ y ≤ Ly . For a
non-trivial problem, we must have B and D non-zero. Hence, the boundary
conditions ψ(x = Lx) = 0 and ψ(y = Ly) = 0 respectively yield:

sin(δkLx) = 0 or δk =
πk

Lx
, k ∈ N? (4.35)

sin(νlLy) = 0 or νl =
πl

Ly
, l ∈ N? (4.36)

Without loss of generality we can set B = D = 1, to give

Gk(x)Hl(y) = sin
πkx

Lx
sin

πly

Ly
{k, l} ∈ N?
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Step 2: Solving ODEs satisfying boundary conditions
• The solution to the ODE in t, i.e. Eq. (4.32), is of course easily seen
to be of the form:

Fk,l(t) = Mk,l cosωk,lt+Nk,l sinωk,lt

where ωk,l = uκk,l and from Eq. (4.34) κ2k,l = ν2l + δ2k, so that the
eigenfrequency of vibration associated with eigenvectors Gk and Hl

is:

ωk,l = uπ

√
k2

L2
x

+
l2

L2
y

{k, l} ∈ N?. (4.37)

• Then, ψk,l(t, x, y) = Fk,l(t)Gk(x)Hl(y) is thus given by

ψk,l = (Mk,l cosωk,lt+Nk,l sinωk,lt) sin
πkx

Lx
sin

πly

Ly
. (4.38)

The coefficients Mk,l and Nk,l are determined respectively from the
initial distributions ψ(x, y, t = 0) = ψ0(x, y) and
ψt(x, y, t = 0) = ν0(x, y).
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Step 3: Solving PDE satisfying initial conditions
The solution to the PDE is the sum of all possible oscillations (eigenfunctions):

ψ(x, y, t) =
∑
k

∑
l

ψk,l(x, y, t)

ψ(x, y, t) =
∞∑
k=1

∞∑
l=1

(
Mk,l cosωk,lt+Nk,l sinωk,lt

)
sin

πkx

Lx
sin

πly

Ly
(4.39)

Applying the initial conditions, we clearly find:

ψ(x, y, t = 0) = ψ0(x, y) =
∞∑
k=1

∞∑
l=1

Mk,l sin
πkx

Lx
sin

πly

Ly

∂ψ

∂t

∣∣∣∣
t=0

= ν0(x, y) =
∞∑
k=1

∞∑
l=1

ωk,lNk,l sin
πkx

Lx
sin

πly

Ly
.

Coefficients Mk,l and Nk,l are found by projection. The result is a double
Fourier sine series with coefficients which can be defined over half the period:

Mk,l =
4

LxLy

∫ Lx

0
dx

∫ Ly

0
dy ψ0(x, y) sin

πkx

Lx
sin

πly

Ly

Nk,l =
4

LxLyωk,l

∫ Lx

0
dx

∫ Ly

0
dy ν0(x, y) sin

πkx

Lx
sin

πly

Ly
.
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Example of half range double Fourier sine series
representation of a paraboloid
• Consider the paraboloid function

ψ0(x, y) = A

(
x

Lx
− x2

L2
x

)(
y

Ly
− y2

L2
y

)
The double Fourier sine representation of this paraboloid is (see
exercise):

ψ0(x, y) =

(
2

π

)6 ∞∑
k=1

∞∑
l=1

A

(2k − 1)3(2l − 1)3
sin

πx(2k − 1)

Lx
sin

πy(2l − 1)

Ly

• Given that ψ0(x, y) is the initial displacement, and choosing the
initial velocity to be zero, i.e. ν0 = 0, the final solution is

ψ =

(
2

π

)6 ∞∑
k=1

∞∑
l=1

A

(2k − 1)3(2l − 1)3
sin

πx(2k − 1)

Lx
sin

πy(2l − 1)

Ly

× cos

[
uπ

(
(2k − 1)2

L2
x

+
(2l − 1)2

L2
y

)1/2

t

]
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Example of half range double Fourier sine series
representation of a paraboloid

In the plots, take Lx = Ly = 1, u = 1 and A = 1:
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Extension of initial distribution for solving over interval
[−Lx, Lx], [−Ly, Ly]

As mentioned before, if the boundary conditions of a problem are placed on the
perimeter of a rectangle (or box for a 3D problem), we can always solve the
problem with a general multiple complex exponential Fourier series. The multiple-
complex exponential series defined in Eqs. (4.24) and (4.25) has periodicity over
[−Lx, Lx] and [−Ly , Ly ].

For the previous 2D wave equation, where the boundary was placed along the
interval [0, Lx], and [0, Ly ], all that needs to be done is to ensure the initial profile
is periodic over interval [−Lx, Lx], [−Ly , Ly ]. The (2D) complex exponential
decomposition of Eqs. (4.26) and (4.27) would give the correct solution with the
below initial profile.
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Heat equation in one dimension: boundary conditions

The heat equation in one dimension is given by the PDE

∂ψ

∂t
= K2 ∂

2ψ

∂x2
,

where ψ(x, t) is the temperature along x over time t.

An important related problem is the heat in a metal bar of length L
(infinite length bars are considered later in the section on Fourier
transforms). Two applications associated with this are:

1. where the two ends of the bar are held at a fixed temperature at
all times, e.g. at zero (ψ(t, x = 0, L) = 0). This is an initial value
problem (IVP) with Dirichlet boundary conditions (BC)

2. where the two ends are insulated, so that the temperature at the
ends of the bar can evolve, but the ends of the bar have zero
temperature gradient at all times (∂ψ(t, x = 0, L)/∂x = 0). This
is an IVP problem with Neumann BC.
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Suitable series representation of initial distribution
• Consider that we choose the initial distribution ψ0(x) = ψ(x, t = 0) to be a
triangular wave over 0 ≤ x ≤ L (choose L = 1 in figure).
• As seen in the exercises, we can choose to represent the initial distribution ψ0(x)
as a half range sine, or a half range cosine series. but, can either be used to
solve the physical problems outlined above?

1
x

1

psi_0(x)
Sin series 10 terms

1
x

1
psi_0(x)

Cosine series 10 terms

• For the Dirichlet BC problem (ψ(t, x = 0, L) = 0), the initial distribution
ψ(t = 0, x) should be chosen to be a sine series (odd function over full period
[−L,L]). A cosine series would be inconsistent with BC at t = 0.
• For the Neumann problem (∂ψ(t, x = 0, L)/∂x = 0), the initial distribution
ψ(t = 0, x) should be chosen to be a cosine series (even function over full period
[−L,L]). A sine series would be inconsistent with BC at t = 0.
• By solving the problem step by step, the appropriate selection is automatic.
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One dimensional heat equation with Neumann BC

∂ψ

∂t
= K2 ∂

2ψ

∂x2

Spatial domain 0 ≤ x ≤ L with boundary conditions

∂ψ

∂x

∣∣∣∣
x=0,L

= 0 (Neumann type)

Initial conditions

ψ(x, y, t = 0) = ψ0(x, y) (later applied to triangular wave).

We now go about solving the problem in three steps

1. Forming two sets of ODE’s

2. Solve ODEs satisfying the boundary conditions

3. Solve PDE satisfing the initial conditions
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Step 1: obtaining 2 ODEs

From Eq. (4.30) we have ψk(x, t) = Fk(t)Gk(x), so that the 1D heat
equation gives

Gk(Fk)t = K2Fk(Gk)xx

where subscript t and x denote partial derivatives in those variables.
Rearranging gives,

(Fk)t
K2Fk

=
(Gk)xx
Gk

= −κ2k (4.40)

Now, notice that the RHS is independent of time (and the LHS is
independent of x), so that κ is independent of time and x. We can
thus identify the two sets of ODE’s:

dFk
dt

+ ω2
kFk = 0 with ωk = Kκk (4.41)

and
d2Gk
dx2

+ κ2kGk = 0 (4.42)
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Step 2: Solving ODEs satisfying boundary conditions
• The general solution to the spatial ODE equation, Eq. (4.42), is once again

Gk = A cos(κkx) +B sin(κkx) so that
dGk

dx
= −Aκk sin(κkx) +Bκk cos(κkx)

The Neumann boundary condition at x = 0 forces B = 0 (since dGk/dx|x=0 = 0) .
Thus, Gk is represented by a cosine series. This is consistent with the discussion
on the suitable series representation for the initial (t = 0) heat distribution.

• The domain of the problem is bounded by 0 ≤ x ≤ L. For a non-trivial problem,
we must have A non-zero. Hence, the Neumann boundary condition at x = L (i.e.
dGk/dx|x=L = 0) yields:

sin(κkL) = 0 or κk =
kπ

L
with k ∈ {0, 1, 2, 3...}.

• The solution to the ODE in time (4.41) is simply Fk = Mk exp(−ω2
kt). We

obtain ψk with eigenfrequencies ωk = Kκk = Kkπ/L:

ψk(x, t) = Mk cos

(
kπx

L

)
exp(−ω2

kt) with ωk =
Kkπ

L
and k ∈ {0, 1, 2, 3...}.

(4.43)
Interesting there is a non-zero eigenvector even when the eigenvalue is zero!
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Step 3: Solving PDE satisfying initial conditions

The solution to the PDE is the sum of all possible oscillations (eigenfunctions):

ψ(x, t) =
∑
k

ψk(x, t)

ψ(x, t) =
∞∑
k=0

Mk cos

(
kπx

L

)
exp

[
−
(
Kkπ

L

)2

t

]
(4.44)

At the initial time t = 0 we thus have

ψ(x, t = 0) = ψ0(x) =
∞∑
k=0

Mk cos

(
kπx

L

)
,

where the coefficient Mk is obtained in terms of the initial distribution ψ0(x) once
again by projection:

M0 =
1

L

∫ L

0
dxψ0(x), Mk =

2

L

∫ L

0
dxψ0(x) cos

kπx

L
k ∈ {1, 2, 3...}
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Neumann BC and triangular initial distribution
Taking the cosine series representation for a triangular initial distribution ψ0(x)
with amplitude A, suitable for the Neumann BC for a bar with insulated ends, the
Fourier coefficients (exercise) are:

M0 =
A

2
, Mk =

4A

k2π2

(
2 cos

kπ

2
− cos kπ − 1

)
k ∈ {1, 2, 3...}

This gives a full solution in x and t:

ψ =
A

2
+
∞∑
k=1

4A

k2π2

(
2 cos

kπ

2
− cos kπ − 1

)
cos

(
kπx

L

)
exp

[
−
(
Kkπ

L

)2

t

]

0.2 0.4 0.6 0.8 1.0
x

0.2

0.4

0.6

0.8

1.0

psi(x,t)
Evolution of bar temperature (A=1, L=1, K=1)

t=1

t=0.05

t=0.01

t=0

Perfect insulated ends of bar prevent energy loss, so that average temperature
along bar is conserved!
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Fourier-bessel basis associated with 2D wave equation
with boundary conditions placed on a circle

We now consider a 2D wave equation where we place the boundary conditions
on a circle r = R, and take ψ on this surface to be independent of poloidal angle
(choose Dirichlet on r = R):

ψ(R) = 0 for t ≥ 0 (Dirichlet type).

Choose initial conditions with poloidal symmetry (relaxed in exercise).

ψ(r, t = 0) = ψ0(r)

ψt(r, t = 0) = ν0(r)

Since the boundary is circular, we naturally choose to define the 2D Laplacian in
terms of polar coordinates. Due to poloidal symmetry in boundary and initial
conditions, we have ψ = ψ(r, t). The wave equation is therefore,

∂2ψ

∂t2
= u2

(
∂2ψ

∂r2
+

1

r

∂ψ

∂r

)
.

The problem can be solved by expanding ψ in terms of the Fourier-Bessel basis,
and substituting into the the PDE (exercise). Or, we assume the general separable
form of Eq. (4.30), and follow the three steps (which can easily be generalised to
include non-poloidal symmetry)

1. Forming two sets of ODE’s
2. Solve ODEs satisfying the boundary conditions
3. Solve PDE satisfing the initial conditions
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Step 1: obtaining 2 ODEs

From Eq. (4.30) we have ψk(r, t) = Fk(t)Gk(r), so that the cylindrical wave
equation gives

Gk(Fk)tt = u2Fk
[
(Gk)rr + r−1(Gk)r

]
where subscript t and r denote partial derivatives in those variables. Rearranging
gives,

(Fk)tt

u2Fk
=

1

Gk

[
(Gk)rr +

1

r
(Gk)r

]
= −κ2k (4.45)

Now, notice that the RHS is independent of time (and the LHS is independent of
r), so that κ is independent of time and r. We can thus identify the ODE’s:

d2Fk,l

dt2
+ ω2

k,lFk,l = 0 with ωk,l = uκk,l. (4.46)

and
d2Gk

dr2
+

1

r

dGk

dr
+ κ2kGk = 0 (4.47)

The latter equation can be written as Bessel’s equation by a change of variable
s = κkr:

d2Gk

ds2
+

1

s

dGk

ds
+Gk = 0 (4.48)
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Step 2: Solving ODEs satisfying boundary conditions
• The general solution to the Bessel equation, Eq. (4.48), is (see ODE section) the
sum of Bessel functions of the first kind J0 and second kind Y0.

Gk = AJ0(rκk) +BY0(rκk)

Now, Y0(rκk → 0)→∞, so that for a physical solution on the axis of symmetry,
we require B = 0.

• The domain of the problem is 0 ≤ r ≤ R. For a non-trivial problem, we must
have A non-zero. Hence, the boundary condition ψ(r = R) = 0 yields:

J0(κkR) = 0 or κk =
αk

R
,

where the infinite set αk satisfies J0(αk) = 0, with k ∈ N?.
Thus the functions

Gk(r) = J0
(αkr
R

)
k ∈ N?

are solutions of the ODE (4.47) and are zero on the boundary circle r = R.

• The solution to the ODE in time (4.46) is simply Fk = Mk cosωkt+Nk sinωkt.
Given that ωk = uκk, and using ψk = FkGk, we obtain the solution ψk with
eigenfrequencies αku/R :

ψk(r, t) =

[
Mk cos

αkut

R
+Nk sin

αkut

R

]
J0
(αkr
R

)
(4.49)
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Step 3: Solving PDE satisfying initial conditions
The solution to the PDE is the sum of all possible oscillations. This generates a
Fourier-Bessel series (leaving aside problems of convergence and uniqueness):

ψ(r, t) =
∑
k

ψk(r, t)

ψ(r, t) =
∞∑
k=1

[
Mk cos

αkut

R
+Nk sin

αkut

R

]
J0
(αkr
R

)
(4.50)

Considering the initial conditions, we clearly find:

ψ(r, t = 0) = ψ0(r) =
∞∑
k=1

MkJ0
(αkr
R

)
∂ψ

∂t

∣∣∣∣
t=0

= ν0(r) =
∞∑
k=1

αku

R
NkJ0

(αkr
R

)
.

Clearly, Mk and Nkαku/R are the coefficients of a Bessel series (see ODE
section). These coefficients are easily calculated in terms of the initial
distributions ψ0(r) and ν0(r) by projection:

Mk =
2

R2[J1(αkr/R)]2

∫ R

0
dr ψ0(r)rJ0

(αkr
R

)
k ∈ N?

Nk =

(
R

αku

)
2

R2[J1(αkr/R)]2

∫ R

0
dr ν0(r)rJ0

(αkr
R

)
.
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Notes

The development of the coefficient Mk depends on the differentiability of
ψ0(r). In general, for a generalised solution, we require that ψ0(r) is once
again piecewise continuous.
As seen earlier in this course, the Bessel-Fourier series is an orthogonal ex-
pansion, so that for the case at hand,∫ R

0

dr rJ0(αkr/R)J0(αlr/R) = 0 k, l ∈ N? and k 6= l

where J0(αk) = 0.
Moreover for the special case k = l we have∫ R

0

dr r [J0(αkr/R)]2 =
R2

2
[J1(αkr/R)]2 k ∈ N?

where Jn(x) satisfies the ODE

x2
dJn(x)

dx2
+ x

dJn(x)

dx
+ (x2 − n2)Jn(x).



2D wave equation: poloidally symmetric modes of
vibration in a circular disc

Examples of eigenmodes of vibration with different radial mode
numbers n. Modes have angular symmetry (m = 0)
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2D wave equation: modes of vibration in a circular disk
that break poloidal symmetry

Problem treated in the exercises:

Examples of eigenmodes of vibration of a disc with different poloidal
and radial mode numbers m and n respectively.
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