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1. Complex analysis in one variable

Recall that C = {z = x+ iy : x, y ∈ R} and the complex unit i satisfies i2 = −1. As such C ≈ R2 via
x+ iy 7→ (x, y). Moreover, for z1 = x1 + iy1 and z2 = x2 + iy2 we define

• z1 + z2 := (x1 + x2) + i(y1 + y2);
• z1 · z2 := (x1x2 − y1y2) + i(x1y2 + x2y1);
• z1 = x1 − iy1;
• |z1| =

√
x2

1 + y2
1 ;

• z−1
1 = z1

|z1|2 provided z1 6= 0.

We recall the following properties that follow directly from the definitions:

• z1 + z2 = z1 + z2;
• z1 · z2 = z1 · z2;
• z1 = z1;

• z−1
1 = (z1)−1;

• |z1 · z2| = |z1||z2|;
• (z1 · z2)−1 = z−1

1 · z−1
2 ;

Note that | · | defines a norm on C which makes it a Hilbert space with the scalar product (z1, z2) = z1 ·z2.
Then we can define open sets in C as usual and we can define the convergence of sequences (zn)n∈N to
some z ∈ C by requiring that lim

n→+∞
|zn − z| = 0. We will use the following notation:

• C: complex numbers
• U : an open subset of C
• D: a domain (open and path-connected subset of C)
• Br(z0) = {z ∈ C : |z − z0| < r}: open ball with radius r > 0 and center z0 ∈ C
• ∂Br(z0) = {z ∈ C : |z − z0| = r}: the boundary of Br(z0)

Recall that a set S is path-connected if for any two points z1, z2 ∈ S there exists a continuous curve
γ : [0, 1]→ S such that γ(0) = z1 and γ(1) = z2.

1.1. Holomorphic functions. Now we come to the central object of this chapter.

Definition 1.1. A function f : U → C is called complex differentiable in z0 ∈ U if there exists the limit

f ′(z0) = lim
h→0
h6=0

f(z0 + h)− f(z0)

h
∈ C.

It is called holomorphic on U if it is complex differentiable in every z0 ∈ U . If U = C we say that f is
entire.

Remark 1.2. The notion limh→0
h 6=0

means that the limit exists for every sequence hn → 0 with hn 6= 0 for

all n ∈ N. In particular, the sequence can approach 0 from different directions.
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As we shall see the complex differentiability of a function implies a lot of nice properties. For instance,
f is then automatically infinitely many times differentiable and can be represented locally as a power
series.

But first let us stress the difference to differentiability when f = u + iv is identified with a function

f̃ : Ũ ⊂ R2 → R2 via f̃(x, y) = (u(x + iy), v(x + iy)). To this end, note that for fixed w ∈ C the
multiplication z 7→ w · z can be viewed as a linear mapping from R2 to R2. On the one hand, writing
w = a+ ib and z = x+ iy we derive the matrix representation(

x
y

)
7→
(
ax− by
ay + bx

)
=

(
a −b
b a

)(
x
y

)
.

On the other hand, writing w = |w|eiϕ in polar coordinates, we see that a = |w| cos(ϕ) and b = |w| sin(ϕ),
so that (

a −b
b a

)
= |w|

(
cos(ϕ) − sin(ϕ)
sin(ϕ) cos(ϕ).

)
Hence the multiplication in C represents a rotation followed by a dilation. In particular, it preserves
angles. Since Definition 1.1 implies that

f(z) = f(z0) + f ′(z0)(z − z0) + o(|z − z0|),

we conclude that f(z) is locally approximated by a dilation combined with a rotation. Recall that real

differentiability of f̃ requires that there exists a matrix Df̃(z0) ∈ R2×2 such that

f̃(z) = f̃(z0) +Df̃(z0)(z − z0) + o(|z − z0|).

The matrix Df̃(z0) contains the partial derivatives and is of the form

Df̃(z0) =

(
∂xu(z0) ∂yu(z0)
∂xv(z0) ∂yv(z0)

)
.

The main difference to real differentiability is that we require a complex product as linear approximation
instead of a matrix-vector product. As we have seen this corresponds to a special structure of the matrix-
vector product. Using again the identification C ≈ R2 this leads us to the following proposition.

Proposition 1.3 (Cauchy-Riemann equations). A function f = u+ iv : U → C is complex differentiable

in z0 ∈ U if and only if f̃ : U → R2 defined above is real differentiable in z0 and satisfies

∂xu(z0) = ∂yv(z0),

∂xv(z0) = −∂yu(z0).

Remark 1.4. As for the standard derivative one can prove the following properties:

(i) If f, g : U → C are complex-differentiable in z0 ∈ C, then so are f+g, f ·g and, provided g(z0) 6= 0,
also 1/g. Moreover, (f + g)′(z0) = f ′(z0) + g′(z0) and (f · g)′(z0) = f(z0)g′(z0) + f ′(z0)g(z0),
while (1/g)′(z0) = −g′(z0)/g(z0)2.

(ii) If f : U → C is holomorphic and g : V → U is holomorphic, then f ◦ g : V → C is holomorphic
and (f ◦ g)′(z0) = f ′(g(z0))g′(z0).

Example 1.5. (i) Constant functions f(z) = c are holomorphic with f ′(z) = 0 for all z ∈ C.
(ii) The linear function f(z) = z is holomorphic on C. By the previous remark it follows that every

polynomial p(z) = a0 + a1z + . . .+ anz
n is holomorphic with p′(z) = a1 + . . .+ nanz

n−1.
(iii) f(z) = z−n with n ∈ N is holomorphic on C \ {0} with f ′(z) = −nz−n−1.
(iv) convergent power series f(z) =

∑∞
k=0 ak(z − z0)k are holomorphic on the open disc BR(z0),

where R denotes the radius of convergence. It holds that f ′(z) =
∑∞
k=1 kak(z − z0)k−1 (see

exercise H 1.3). In particular, the complex exponential function exp(z) =
∑∞
k=0

zk

k! is an entire
function and exp′(z) = exp(z).

(v) the complex conjugation z 7→ z fails to be complex differentiable at any point z ∈ C (see exercise
H 1.2).
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1.2. Complex curve integrals. The first important result about holomorphic functions is Cauchy’s
integral formula. Before we state it let us recall the notion of curve integrals. In what follows we will
always assume that γ : [a, b] ⊂ R → U is a piecewise continuously differentiable curve. We say that a
curve is closed if γ(a) = γ(b).

Definition 1.6. Let γ : [a, b]→ U be a piecewise C1-curve and f : U → C be holomorphic. The complex
curve integral of f along γ is defined as∫

γ

f dz :=

∫ b

a

f(γ(t))γ′(t) dt.

In the above formula the integrand on the right hand side is complex-valued. Integration has to be
understood by integrating separately the real-and imaginary part.

Let us collect some elementary properties of the complex curve integral.

Lemma 1.7. Let γ : [a, b]→ U be a piecewise C1-path and f : U → C be holomorphic.

(i) The curve integral is invariant under orientation preserving reparametrizations, i.e., if ϕ : [a1, b1]→
[a, b] is a bijective piecewise C1-function such that ϕ′(s) > 0 for all s ∈ [a1, b1] then for the curve
γ1 : [a1, b1]→ U defined by γ1 = γ ◦ ϕ we have∫

γ1

f dz =

∫
γ

f dz.

If instead ϕ′(s) < 0 for all s ∈ [a1, b1] then the integral changes its sign.
(ii) (fundamental estimate)∣∣∣∣∫

γ

f dz

∣∣∣∣ ≤ sup
s∈[a,b]

|f(γ(s))|
∫ b

a

|γ′(t)|dt︸ ︷︷ ︸
=:L(γ): length of γ

.

(iii) Suppose there exists a primitive F : U → C of f , i.e., F is holomorphic on U with F ′ = f . Then∫
γ

f dz = F (γ(b))− F (γ(a)).

In particular, the curve integral equals 0 if γ is closed.

Proof. (i) We perform the change of variables s = ϕ(t), so that by definition∫
γ1

f dz =

∫ b1

a1

f(γ(ϕ(t)))γ′(ϕ(t))ϕ′(t) dt =

∫ b

a

f(γ(s))γ′(s) ds =

∫
γ

f dz,

where we used that due to the monotonicity of ϕ we have that ϕ(a1) = a and ϕ(b1) = b. Here we assumed
that the function is C1. The general case can be treated by partitioning the interval into finitely many
smaller ones where ϕ is C1. If ϕ is monotone decreasing, then the change of variables comes with a sign
change.
(ii) By the triangle inequality for integrals we have∣∣∣∣∣

∫ b

a

f(γ(t))γ′(t) dt

∣∣∣∣∣ ≤
∫ b

a

|f(γ(t))||γ′(t)|dt ≤ sup
s∈[a,b]

|f(γ(s))|
∫ b

a

|γ′(t)|dt

as claimed.
(iii) By the chain rule it holds that

d

dt
F (γ(t)) = f(γ(t))γ′(t).

Integrating this equality over the interval [a, b] yields the claim by the fundamental theorem of calculus.
�
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The last point raises the question if every holomorphic function possesses a primitive. As we shall see
this strongly depends on the geometry of the set U where the function f is defined. Let us start with an
illustrative example.

Example 1.8. Let f : C \ {0} → C be defined by f(z) = z−n for n ∈ N. Consider the closed curve
∂B1(0) = {z ∈ C : |z| = 1} oriented counter-clockwise, so that we can choose the parametrization
γ : [0, 2π]→ C given by γ(t) = eit. Then the complex curve integral equals∫

γ

f dz =

∫ 2π

0

e−intieit dt = i

∫ 2π

0

e(1−n)it dt =

{
2πi if n = 1,

1
(1−n)

(
e2π(1−n)i − 1

)
if n ≥ 2

=

{
2πi if n = 1,

0 if n ≥ 2.

Hence there cannot exist a primitive of the function z 7→ 1

z
on C \ {0}. In particular, there exists no

’logarithm’ on C \ {0}.

Next we study which conditions on the set U ensure the existence of primitives for all holomorphic
functions f : U → C. We introduce the following geometric properties:

Definition 1.9. A set M ⊂ C is called star-shaped with respect to z0 ∈M if for all z ∈M the straight
line between z0 and z, denoted by [z0, z], is contained in M .

Remark 1.10. • An open star-shaped set is automatically path-connected, so it is a domain.
• Convex sets M are star-shaped with respect to every point z0 ∈M .
• the sliced complex plane C− := C \ {x ∈ R : x ≤ 0} is star-shaped.
• the punctured complex plane C \ {0} is not star-shaped.

We will now prove an auxiliary result on the existence of primitives.

Lemma 1.11. Let U ⊂ C be a star-shaped domain with respect to some z0 ∈ U and f : U → C be
continuous such that ∫

∂∆

f(z) dz = 0

for all closed triangles ∆ ⊂ U . Then the curve integral

F (z) =

∫
[z0,z]

f(ξ) dξ

defines a primitive of f .

Proof. Let z ∈ U be arbitrary. We have to show that F is complex differentiable in z with F ′(z) = f(z).
Fix r > 0 such that Br(z) ⊂ U and fix w ∈ Br(z) \ {z}. Choose a triangle ∆ with corners z0, z and w.
Then according to the assumption

0 =

∫
∂∆

f(ξ) dξ =

∫
[z0,z]

f(ξ) dξ︸ ︷︷ ︸
=F (z)

+

∫
[z,w]

f(ξ) dξ +

∫
[w,z0]

f(ξ) dξ︸ ︷︷ ︸
−F (w)

.

Hence we deduce that

F (w)− F (z) =

∫
[z,w]

f(ξ) dξ.

Since the length of
∫

[z,w]
1 dξ = w − z it follows that

F (w)− F (z)

w − z
− f(z) =

1

w − z

∫
[z,w]

f(ξ)− f(z) dξ



LECTURE NOTES 5

We are done if we show that the right hand side term tends to 0 when w → z. To this end, we apply the
fundamental estimate which yields that∣∣∣∣∣ 1

w − z

∫
[z,w]

f(ξ)− f(z) dξ

∣∣∣∣∣ ≤ L([z, w])

|w − z|
sup
t∈[z,w]

|f(t)− f(z)| = sup
t∈[z,w]

|f(t)− f(z)|.

Since f is continuous in z, the last term vanishes when w → z. �

The next lemma ensures that holomorphic functions satisfy the triangle condition of the previous
lemma.

Lemma 1.12 (Goursat’s lemma). Let U ⊂ C be open and f : U → C be holomorphic. If ∆ ⊂ U is a
closed triangle , then ∫

∂∆

f(z) dz = 0.

Proof. Fix such a triangle ∆. We subdivide it into four smaller triangles (∆j
1)4
j=1 by joining the midpoints

of each side of ∆ and orient all triangle boundaries counterclockwise (see Figure 1). Then

Figure 1. Partitioning of the initial triangle ∆.

∫
∂∆

f(z) dz =

4∑
j=1

∫
∂∆j

1

f(z) dz

since the contributions from the inner triangle are canceled. Choose an index j1 ∈ {1, . . . , 4} such that∣∣∣∣∣
∫

∆
j1
1

f(z) dz

∣∣∣∣∣ is maximal. Set then ∆1 = ∆j1
1 , so that

∣∣∣∣∫
∂∆

f(z) dz

∣∣∣∣ ≤ 4

∣∣∣∣∫
∂∆1

f(z) dz

∣∣∣∣ .
Now we iterate this procedure to obtain a sequence of triangles (∆n)n∈N such that∣∣∣∣∫

∂∆

f(z) dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫
∂∆n

f(z) dz

∣∣∣∣ .
Moreover, note that in each step the side lengths decrease by a factor of 2, so that

L(∆n) = 2−nL(∆).
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The sequence of triangles (∆n)n∈N is nested and each ∆n is a compact set. Hence the intersection is
non-empty1 and there exists

z0 ∈
∞⋂
n=1

∆n.

Next we expand the holomorphic function f in z0 via f(z) = f(z0) + f ′(z0)(z − z0) + o(|z − z0|). Then∫
∂∆n

f(z) dz =

∫
∂∆n

f(z0) + f ′(z0)(z − z0) dz︸ ︷︷ ︸
=0 since there exists a primitive

+

∫
∂∆n

o(|z − z0|) dz.

We conclude from the fundamental estimate that∣∣∣∣∫
∂∆

f(z) dz

∣∣∣∣ ≤ 4n
∣∣∣∣∫
∂∆n

o(|z − z0|) dz

∣∣∣∣ ≤ 4nL(∆n)o(L(∆n)) = 2no(L(∂∆n))→ 0

as n→ +∞. This proves the claim. �

Now we are in a position to prove the famous Cauchy integral theorem on star-shaped domains.

Theorem 1.13 (Cauchy’s integral theorem, version I). Let U ⊂ C be a star-shaped domain with respect
to z0 ∈ C and f : U → C be holomorphic. Then

F (z) =

∫
[z0,z]

f(ξ) dξ

defines a holomorphic primitive of f . In particular, the curve integral of f over curves in U depends only
on the start and endpoints.

Proof. Applying Goursat’s lemma this is a direct consequence of Lemma 1.11 and Lemma 1.7 . �

We now apply this result to prove a non-trivial invariance property of the complex curve integral for
holomorphic functions.

Corollary 1.14. Let U ⊂ C be open and z0 ∈ U . Suppose that f : U \ {z0} → C is holomorphic. Let

r,R > 0 and c ∈ C be such that Br(z0) ⊂ BR(c) and BR(c) ⊂ U . Then∫
∂Br(z0)

f dz =

∫
∂BR(c)

f dz,

where both circles ∂Br(z0), ∂BR(c) are oriented counterclockwise.

Proof. Since BR(c) ⊂ U there exists a slightly larger open ball B∗ ⊂ U such that BR(c) ⊂ B∗ and f is
holomorphic on B∗. Note that due to convexity the infinite line trough c and z0 (take any line though z0

if z0 = c) intersects both ∂Br(z0) and ∂BR(c) in exactly two points. Let z1
R, z

2
R be the intersection points

in ∂BR(c) and z1
r , z

2
r be the intersection points in ∂Br(z0), respectively. Then we define the following

paths:

- α a straight line from z1
R to z1

r , where we assume without loss of generality that z1
r is closer to

z1
R than z2

r ;
- γ1 a half circle on ∂Br(z0) from z1

r to z2
r oriented clockwise;

- γ2 a half circle on ∂Br(z0) from z2
r to z1

r oriented clockwise;
- β a straight line from z2

r to z2
R;

- γ3 a half circle on ∂BR(c) from z1
R to z2

R oriented counterclockwise;
- γ4 a half circle on ∂BR(c) from z2

R to z1
R oriented counterclockwise;

see also Figure 2. Then consider the points a1, a2 ∈ ∂B∗ that are the two intersection points of the line

1Construct a sequence zn by picking any zn ∈ ∆n. Since ∆1 is compact there exists a subsequence znj such that
znj → z0 ∈ ∆1. Since zn ∈ ∆2 for all n ≥ 2 the limit belongs also to ∆2. Continuing this reasoning we find that z0 ∈ ∆n

for all n ∈ N.
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c

z0

α

γ1γ2

β

γ4γ3

a2

∂B∗ γ

Figure 2. A sketch of the paths defined above and the sliced ball (created by Gianluca Orlando).

through z0 that is orthogonal to the previously chosen line and ∂B∗. We may assume that [z0, ai]∩γi 6= 0
for i = 1, 2. Define the two closed paths

γ = α+ γ1 + β + γ4, γ′ = γ3 − β + γ2 − α,
where with a slight abuse of notation we write + if we concatenate the paths from left to right and −
if we concatenate the paths from left to right, but the one on the right hand side of the − sign in the
reverse direction. Note that the set B∗ \ [z0, ai] is star-shaped for i = 1, 2 and γ([0, 1]) ⊂ B∗ \ [z0, a2] and
γ′([0, 1]) ⊂ B∗ \ [z0, a1]. Hence from Theorem 1.13 we conclude that∫

α

f dz +

∫
γ1

f dz +

∫
β

f dz +

∫
γ4

f dz =

∫
γ

f dz = 0,∫
γ3

f dz −
∫
β

f dz +

∫
γ2

f dz −
∫
α

f dz =

∫
γ′
f dz = 0.

Adding these two equations the integrals over α and β cancel and by definition of the remaining paths
we obtain the claim. �

The previous result is a special case of a more general invariance property involving more topological
notions that we introduce for the sake of completeness:

Definition 1.15 (Homotopy and simply connected sets). Let U ⊂ C be an open set.

(i) two curves2 γ1, γ2 : [0, 1] → U with same start and endpoints are called homotopic in U if there
exists a continuous function H : [0, 1]× [0, 1]→ U such that

H(0, t) = γ1(t), H(1, t) = γ2(t), H(s, 0) = γi(0), H(s, 1) = γi(1) for i = 1, 2;

(i.e., they can be continuously deformed into each other keeping the start and endpoint fixed)
(ii) two closed curves γ1, γ2 : [0, 1]→ U are called freely homotopic in U if there exists a continuous

function H : [0, 1]× [0, 1]→ U such that

H(0, t) = γ1(t), H(1, t) = γ2(t), H(s, 0) = H(s, 1);

(i.e., they can be continuously deformed into each other preserving closedness)
(iii) a closed curve γ : [0, 1] → U is called null-homotopic in U if it is freely homotopic in U to a

constant curve.
(iv) a domain U ⊂ C is called simply connected if every closed curve γ : [0, 1]→ U is null-homotopic

in U .

2Here we always assume that curves are defined on [0, 1] which can always be achieved by reparametrization.



8 MATTHIAS RUF

In the exercises we will see that star-shaped domains are always simply connected, but that the converse
is not true. Hence the result below is a strict generalization of Theorem 1.13. However, a proof of this
theorem goes beyond the scope of this course.

Theorem 1.16 (Cauchy’s integral theorem, version II). Let U ⊂ C be open and f : U → C be holomor-
phic.

(i) If γ1, γ2 : [0, 1]→ U have the same start and endpoint and are homotopic in U or are closed and
freely homotopic in U then ∫

γ1

f dz =

∫
γ2

f dz;

(ii) If γ : [0, 1]→ U is closed and null-homotopic in U then∫
γ

f dz = 0;

(iii) If U is simply connected then there exists a primitive F : U → C of f . Fixing any z0 ∈ U it can
be taken of the form

F (z) =

∫
γz

f dξ,

where γz : [0, 1]→ U is any curve that connects z0 and z.

Remark 1.17. (i) The definition of F (z) is independent of the curve γz due to property (ii) when
U is simply connected.

(ii) (complex logarithm) The formula for F (z) can be used to derive an expression for the complex
logarithm as a primitive on 1/z (see also H 2.4). Writing any z ∈ C− = C \ (−∞, 0] as z = |z|eiϕ
with ϕ ∈ (−π, π) we construct γz as the straight line from 1 to |z| composed with an arc of circle
on ∂B|z|(0). Then

log(z) =

∫ 1

0

|z| − 1

1 + t(|z| − 1)
dt+

∫ ϕ

0

|z|−1e−iti|z|eit dt = ln(|z|) + iϕ.

1.3. Consequences of the Cauchy integral theorem. In this section we derive strong properties of
holomorphic functions which follow from Cauchy’s integral theorem. We start with another theorem due
to Cauchy which expresses a holomorphic function by a curve integral. In particular, it implies that in
order to know a holomorphic function in a ball it suffices to know its values on a curve.

Theorem 1.18 (Cauchy’s integral formula on discs). Let U ⊂ C be open and f : U → C be holomorphic.

Let z0 ∈ U and r > 0 be such that Br(z0) ⊂ U . Then for all z ∈ Br(z0) we have

f(z) =
1

2πi

∫
∂Br(z0)

f(ζ)

ζ − z
dζ.

Proof. Fix z ∈ Br(z0) and define the function

g(ζ) =

{
f(ζ)−f(z)

ζ−z if ζ ∈ U \ {z},
f ′(z) if ζ = z.

Since f is complex differentiable in z the function g is continuous on U . We show that
∫
∂Br(z0)

g dζ = 0.

Indeed, since g is continuous and Br(z0) is a compact set g is bounded on Br(z0). From Corollary 1.14
we infer that for any ε > 0 small enough such that Bε(z) ⊂ Br(z0) we have by the fundamental estimate∣∣∣∣∣

∫
∂Br(z0)

g dζ

∣∣∣∣∣ =

∣∣∣∣∣
∫
∂Bε(z)

g dζ

∣∣∣∣∣ ≤ 2πε sup
ζ∈∂Bε(z)

|g(ζ)| ≤ 2πε sup
ζ∈Br(z0)

|g(ζ)|.

Letting ε → 0 we conclude that indeed
∫
∂Br(z0)

g dζ = 0. Next we apply again Corollary 1.14 to the

function h(ζ) = (ζ − z)−1
, which is holomorphic on C \ {z}. Again for ε > 0 small enough we know that



LECTURE NOTES 9

Bε(z) ⊂ Br(z0) and therefore ∫
∂Br(z0)

1

ζ − z
dζ =

∫
∂Bε(z)

1

ζ − z
dζ = 2πi,

where the last equality can be proven as in Example 1.8. Gathering what we proved so far we deduce
that

0 =

∫
∂Br(z0)

g dζ =

∫
∂Br(z0)

f(ζ)

ζ − z
dζ − f(z)

∫
∂Br(z0)

1

(ζ − z)
dζ =

∫
∂Br(z0)

f(ζ)

ζ − z
dζ − f(z)2πi.

Rearranging terms yields the claim. �

Corollary 1.19 (Mean value property). Under the assumptions of Theorem 1.18 it holds that

f(z) =
1

2π

∫ 2π

0

f(z + reit) dt.

Proof. Insert the parametrization t 7→ z + reit for t ∈ [0, 2π] in Theorem 1.18 and evaluate the integral
with z0 = z. �

Next we prove the announced analyticity of holomorphic functions.

Theorem 1.20. Let U ⊂ C be open and f : U → C be holomorphic. Then for each z0 ∈ C and r > 0
with Br(z0) ⊂ U we can write

f(z) =

∞∑
k=0

ak(z − z0)k ∀z ∈ Br(z0)

with ak =
1

2πi

∫
∂Br(z0)

f(z)

(z − z0)k+1
dz.

Proof. Without loss of generality we set z0 = 0 (otherwise consider z 7→ f(z0 + z)). Given r > 0 as in the
theorem we can apply Cauchy’s integral formula to deduce

f(z) =
1

2πi

∫
∂Br(z0)

f(ζ)

ζ − z
dζ =

1

2πi

∫
∂Br(z0)

f(ζ)

ζ

1

1− z
ζ︸ ︷︷ ︸

=

∞∑
k=0

(
z
ζ

)k
dζ,

where the geometric series formula holds since |z| < r = |ζ|. Moreover, since z is fixed the geometric series
converges uniformly in ξ ∈ ∂Br(z0), so that we can exchange the sum with the integral which yields

f(z) =

∞∑
k=0

(
1

2πi

∫
∂Br(z0)

f(ζ)

ζk+1
dζ

)
zk =

∞∑
k=0

akz
k.

�

Corollary 1.21. Let U ⊂ C be open and f : U → C be holomorphic. Then f is infinitely complex
differentiable in each z0 ∈ U and each derivative f (n) is holomorphic on U . Moreover, if Br(z0) ⊂ U the
derivatives can be calculated by

f (n)(z0) =
n!

2πi

∫
∂Br(z0)

f(z)

(z − z0)n+1
dz.

Proof. We have proven in exercise H 1.3 that power series are holomorphic within their radius of conver-
gence and that the derivative has again a power series representation with the same radius of convergence.
Hence by Theorem 1.20 and induction f is infinitely complex differentiable and every derivative is again
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complex differentiable in every z0 ∈ U . Moreover, given the representation f(z) =
∑∞
k=0 ak(z − z0)k,

again by H 1.3 it follows by induction that

f (n)(z) =

∞∑
k=n

n−1∏
i=0

(k − i)ak(z − z0)k−n,

so that f (n)(z0) = n!an. Hence also the structure of the derivatives is a consequence of Theorem 1.20. �

Let us derive further consequences of Cauchy’s integral formula. The first one is the converse statement
to Goursat’s lemma.

Theorem 1.22 (Morera’s theorem). Let U ⊂ C be open and f : U → C be continuous. If for each closed
triangle ∆ ⊂ U we have ∫

∂∆

f dz = 0,

then f is holomorphic on U .

Proof. Fix z0 ∈ U . By Lemma 1.11 the function f has a primitive F on each ball Br(z0) ⊂ U (note
that balls are star-shaped). In particular, by Corollary 1.21 also f = F ′ is holomorphic on Br(z0). Since
z0 ∈ U was arbitrary this concludes the proof. �

While Morera’s theorem seems to be a rather complicated method to prove holomorphy of a given
function it implies a strong property for sequences of holomorphic functions.

Theorem 1.23 (Weierstrass convergence theorem). Let U ⊂ C be open and (fn)n∈N : U → C be a
sequence of holomorphic functions. Assume that there exists a function f : U → C such that fn → f
locally uniformly, i.e., for each compact set K ⊂ U it holds that

sup
z∈K
|fn(z)− f(z)| → 0 as n→ +∞.

Then f is holomorphic on U .

Remark 1.24. On R differentiability is not preserved under local uniform convergence. For instance,

the sequence of smooth functions fn(x) =
√

1
n + x2 converges uniformly locally uniformly on R to the

non-differentiable function f(x) = |x|.

Proof of Theorem 1.23. Let ∆ ⊂ U be a closed triangle. Then due to Goursat’s lemma (see Lemma 1.12)
it holds that

∫
∂∆

fn dz = 0 for all n ∈ N. According to exercise H 2.3 we have

0 =

∫
∂∆

fn dz →
∫
∂∆

f dz.

Recall that the local uniform limit of continuous functions is always continuous (see Analysis 2), so that
Morera’s theorem yields that f is holomorphic. �

The next result shows that entire functions (i.e. holomorphic on C) cannot be bounded except when
they are constant.

Theorem 1.25 (Liouville’s theorem). Let f : C→ C be holomorphic and such that supz∈C |f(z)| < +∞.
Then f is constant.

Proof. It follows from Theorem 1.20 that we can write

f(z) =

∞∑
k=0

akz
k

for all z ∈ C. We show that ak = 0 for all k ≥ 1, so that f(z) = a0 for all z ∈ C as claimed. Using the
formula from Theorem 1.20 for any r > 0 we deduce from the fundamental estimate that

|ak| =
1

2π

∣∣∣∣∣
∫
∂Br(0)

f(z)

zk+1
dz

∣∣∣∣∣ ≤ 1

2π
sup

z∈∂Br(0)

|f(z)|
|z|k+1

L(∂Br(0)) ≤ r−k sup
z∈C
|f(z)|.
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By our assumption the supremum is finite, so that letting r → +∞ yields the claim. �

Recall that Cauchy’s integral formula implies that a holomorphic function on a ball is determined by
its values on the boundary. The next result is a far reaching generalization.

Theorem 1.26 (Identity theorem). Let D ⊂ C be a domain and f, g : D → C be holomorphic functions.
Then the following conditions are equivalent:

(i) f = g on D;
(ii) the set {z ∈ D : f(z) = g(z)} has an accumulation point3 in D;

(iii) there exists z0 ∈ D such that f (n)(z0) = g(n)(z0) for all n ∈ N ∪ {0}.

Proof. (i) =⇒ (ii) is clear. Next we show that (ii) =⇒ (iii) by contradiction. Set h = f − g and let z0 ∈ D
be an accumulation point of the set {h = 0}. Assume that there exists a minimal m ∈ N ∪ {0} such
that h(m)(z0) 6= 0. According to Theorem 1.20 we can write h locally as a power series and, according
to Corollary 1.21, the coefficients ak satisfy ak = 0 for all 0 ≤ k < m and am 6= 0. In particular, we can
write

h(z) =
∑
k=m

ak(z − z0)k = (z − z0)m
∞∑
k=0

am+k(z − z0)k︸ ︷︷ ︸
=:hm(z)

.

Note that hm is holomorphic in a neighborhood of z0 and that hm(z0) = am 6= 0. By continuity there
exists ε > 0 such that hm(z) 6= 0 for all z ∈ Bε(z0). Hence also h(z) 6= 0 for all z ∈ Bε(z0) \ {z0}. This
means that z0 cannot be an accumulation point of {h = 0}, which yields a contradiction.
Finally we show that (iii) =⇒ (i). Here we have to use that D is a domain. Set again h = f − g. By the
continuity of each derivative h(k) (see Corollary 1.21) the set Sk = {z ∈ D : h(k) = 0} is closed in D4.
Hence also the intersection S =

⋂∞
k=0 Sk is closed in D. We claim that S is also open in D. Indeed, if

z0 ∈ S then the power series of h around z0 equals zero, so that h ≡ 0 on a small ball Bε(z0). Hence
Bε(z0) ⊂ S which proves that S is open. Since D is a domain this implies that S = D since by assumption
S 6= ∅ as z0 ∈ S5. Then the power series representation of h equals 0 in every point z ∈ D. This concludes
the proof. �

As a consequence of the identity theorem we deduce that zeros of non-constant holomorphic functions
are isolated.

Corollary 1.27. Let D ⊂ C be a domain and f : D → C be holomorphic. Then either f ≡ 0 or

f(z0) = 0 =⇒ ∃ε > 0 such that f(z) 6= 0 ∀z ∈ Bε(z0) \ {z0}.

Proof. Assume that f is not constantly 0 and that f(z0) = 0 for some z0 ∈ D. If for all ε > 0 there exists
zε ∈ Bε(z0) \ {z0} such that f(zε) = 0, then z0 is an accumulation point of {f = 0} in D. This yields a
contradiction to the identity theorem. �

We next prove that a holomorphic function that is not constant on a domain maps open sets to
open sets. Note that this property is wrong for smooth real-valued functions. For instance, the function
x 7→ sin(x) maps the open interval (0, 2π) to the closed set [−1, 1]. The property that open sets are
mapped to open sets is very important from a topological point of view since it implies that the inverse
function is also continuous (provided it exists). In the proof we will use the following auxiliary result that
is interesting on its own.

Lemma 1.28. Let U ⊂ C be open and f : U → C be holomorphic. Assume that Br(z0) ⊂ U is a closed
ball such that minz∈∂Br(z0) |f(z)| > |f(z0)|. Then f has a zero in Br(z0).

3z0 ∈ D is an accumulation point if there exists a sequence (zn)n∈N ⊂ {z ∈ D : f(z) = g(z)} such that zn 6= z0 for all
n ∈ N and zn → z0.

4A set S is closed in D if for all sequences (zn)n∈N ⊂ S with zn → z ∈ D it holds that z ∈ S. The important point is

that we assume that the limit z belongs to D. In that sense D is closed in D even when it is not closed in C
5Path connectedness implies that the only subsets of D that are open and closed are D and the empty set. This is a

general fact which you find in many analysis/topology text books. For open sets in C also the converse is true.
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Proof. Assume that f(z) 6= 0 for all z ∈ Br(z0). Then by assumption also f(z) 6= 0 for all z ∈ Br(z0). By

continuity it follows that f(z) 6= 0 for all z in a slightly larger open set V ⊂ U with Br(z0) ⊂ V . Then
the function z 7→ 1/f(z) is holomorphic on V and by the mean value property (see Corollary 1.19) we
deduce that

1

|f(z0)|
≤ sup
z∈∂Br(z0)

1

|f(z)|
= ( min

z∈∂Br(z0)
|f(z)|)−1,

which contradicts the assumption. �

Theorem 1.29 (Open mapping theorem). Let D ⊂ C be a domain and f : D → C be a non-constant,
holomorphic function. Then f(D) is again a domain.

Proof. We first show that f(D) is path-connected. Let w1, w2 ∈ f(D). Then there exist z1, z2 ∈ D such
that f(zi) = wi for i = 1, 2. Since D is path-connected there exists a continuous curve γ : [0, 1]→ D such
that γ(0) = z1 and γ(1) = z2. Then f ◦ γ : [0, 1] → f(D) is continuous and connects w1 with w2. Hence
f(D) is path-connected. It remains to prove that f(D) is open. Let w0 ∈ f(D) and z0 ∈ D be such that
f(z0) = w0. Up to considering f−f(z0) we may assume that w0 = 0. Since f is not constant Corollary 1.27

implies that there exists r > 0 such that f(z) 6= 0 for all z ∈ Br(z0) \ {z0}. Set ε =
1

2
min

ζ∈∂Br(z0)
|f(ζ)| > 0

and fix w ∈ Bε(0). It suffices to show that there exists z ∈ D such that f(z) = w. To see this, note that
for all z ∈ ∂Br(z0) we have

|f(z)− w| ≥ min
ζ∈∂Br(z0)

|f(ζ)| − |w| = 2ε− |w| > ε > |w| = |f(z0)− w|.

Hence we can apply Lemma 1.28 to deduce that there exists a zero of z 7→ f(z) − w in Br(z0). This
proves the claim. �

The open mapping theorem can be extended to general open sets U ⊂ C under the assumption that
f is not constant on any open subset V ⊂ U . The conclusion has to be adapted in the sense that f(U)
is an open set, but not necessarily path-connected.

From the open mapping theorem we deduce the maximum principle for holomorphic functions.

Theorem 1.30 (Maximum principle). Let D ⊂ C be a domain and f : D → C be holomorphic. If |f |
attains its maximum on D, then f is constant.

Proof. Assume that there exists z0 ∈ D such that |f(z0)| ≥ |f(z)| for all z ∈ D. If f is not constant, then
by the open mapping theorem there exists ε > 0 such that Bε(f(z0)) ⊂ f(D). But the ball Bε(f(z0))
contains elements w with |w| > |f(z0)|, which contradicts the maximality. Hence f is constant. �

Corollary 1.31. Let D ⊂ C be a bounded domain and f : D → C be continuous and holomorphic on D.
Then |f | attains its maximum on ∂D.

Proof. Since D is compact the continuous function |f | attains its maximum in some z0 ∈ D. If z0 ∈ D
then by the maximum principle f is constant, so the maximum is also attained on ∂D (it is attained in
every point z ∈ D). This concludes the proof. �

Similar to the open mapping theorem the maximum principle holds for general open sets with the
conclusion that f is constant on the connected component containing the maximum of |f |. Moreover,
also in the case of local maxima the maximum principle allows to conclude that f is constant on the
connected component containing the local maximum (see exercise H 4.3).

1.4. Isolated singularities and Laurent series. So far we considered only holomorphic functions,
that is to say very regular functions. In this section we analyze the behavior of holomorphic functions
near isolated singularities as defined below.

Definition 1.32. Let U ⊂ C be open and f : U → C be holomorphic. z0 ∈ C \ U is called an isolated
singularity of f if there exists ε > 0 such that Bε(z0) \ {z0} ⊂ U .

We classify isolated singularities as follows:
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Definition 1.33 (Different types of isolated singularities). Let U ⊂ C be open and f : U → C be
holomorphic. An isolated singularity z0 of f is called

(i) removable if there exists a holomorphic extension f̃ : U ∪ {z0} → C of f ;
(ii) a pole of f if there exists m ∈ N such that the function z 7→ (z − z0)mf(z) has a removable

singularity in z0. The smallest number m with this property is called the order of the pole;
(iii) an essential singularity if z0 is neither a removable singularity nor a pole of f .

Here some examples of isolated singularities:

a) z 7→ sin(z)
z has a removable singularity in z = 0. This can be seen using the power series repre-

sentation of sin(z) which is of the form z − 1
6z

3 + . . ., so that the denominator is canceled.
b) z 7→ (z − z0)−m has a pole of order m in z0 ∈ C.

c) z 7→ e
1
z has an essential singularity in z = 0 (see exercise H 4.5).

The next result characterizes removable singularities.

Lemma 1.34 (Riemann extension lemma). Let U ⊂ C be open and f : U → C be holomorphic. Assume
that z0 ∈ C \ U is an isolated singularity of f . Then the following conditions are equivalent:

(i) z0 is a removable singularity of f ;

(ii) f can be extended to a continuous function f̃ : U ∪ {z0} → C;
(iii) f is bounded in Bε(z0) \ {z0} for some ε > 0;
(iv) lim

z→z0
(z − z0)f(z) = 0.

Proof. See exercise H 3.3. �

Next we want to derive a generalized series representation around isolated singularities. For the sake
of generality we consider not only isolated singularities but functions that are holomorphic on an annulus

Ar,R(z0) = {z ∈ C : r < |z − z0| < R}.
Isolated singularities form a special case setting r = 0. We first prove a generalization of Corollary 1.14.

Lemma 1.35. Let f : Ar,R(z0)→ C be holomorphic. Then for every r < s < ρ < R we have∫
∂Bs(z0)

f dz =

∫
∂Bρ(z0)

f dz.

Remark 1.36. This statement is an easy consequence of the second version of Cauchy’s integral theorem
since the two boundaries are freely homotopic in Ar,R(z0). However, we give a different proof not based
on that theorem.

Proof of Lemma 1.35. Given any holomorphic function g : Ar,R(z0)→ C define the function J : (r,R)→
C by

J(x) =

∫
∂Bx(z0)

g(ζ)

ζ − z0
dζ = i

∫ 2π

0

g(z0 + xeit) dt.

Since g is smooth on Ar,R(z0) it follows that J is differentiable and

J ′(x) = i

∫ 2π

0

d

dx
g(z0 + xeit) dt = i

∫ 2π

0

g′(z0 + xeit)eit dt =
1

x
(g(z0 + x)− g(z0 + x)) = 0.

Thus J is constant on (r,R). Taking g(z) = f(z)(z − z0) we conclude the proof. �

As for the power series representation of holomorphic functions we need a suitable version of Cauchy’s
integral formula on annuli.

Proposition 1.37 (Cauchy’s integral formula for annuli). Let U ⊂ C be open and f : U → C be

holomorphic. Assume that Ar,R(z0) ⊂ U . Then for any z ∈ Ar,R(z0) it holds that

f(z) =
1

2πi

∫
∂BR(z0)

f(ζ)

ζ − z
dζ − 1

2πi

∫
∂Br(z0)

f(ζ)

ζ − z
dζ.
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Proof. Fix z ∈ Ar,R(z0) and define the function g : U → C as

g(ζ) =

{
f(ζ)−f(z)

ζ−z if ζ ∈ U \ {z},
f ′(z) if ζ = z.

Since f is complex differentiable in z it follows from Riemann’s extension lemma that g is holomorphic

z
z0

U

∂BR1
(z0)

∂Br1(z0)

Figure 3. The geometric situation of Proposition 1.37. Around z0 the set U has a hole.

on U . Since Ar,R(z0) ∈ U there exist r1 < r and R1 > R such that Ar1,R1
(z0) ⊂ U (see also Figure 3).

Hence Lemma 1.35 implies that ∫
∂BR(z0)

g dz =

∫
∂Br(z0)

g dz.

Inserting the definition of g we obtain that∫
∂BR(z0)

f(ζ)

ζ − z
dζ −

∫
∂Br(z0)

f(ζ)

ζ − z
dζ =

∫
∂BR(z0)

f(z)

ζ − z
dζ −

∫
∂Br(z0)

f(z)

ζ − z
dζ︸ ︷︷ ︸

=0 since there exists a primitive

= f(z)

∫
∂BR(z0)

(ζ − z)−1 dz︸ ︷︷ ︸
=2πi (apply Thm. 1.18 to f = 1)

= 2πif(z).

Rearranging terms yields the claim. �

Now we can derive the so-called Laurent-series representation on annuli.

Theorem 1.38 (Laurent series expansion). Let U ⊂ C be open and f : U → C be holomorphic. Assume
that Ar,R(z0) ⊂ U . Then for every z ∈ Ar,R(z0) we can write

f(z) =
∑
n∈Z

cn(z − z0)n,

where the coefficients are given by

cn =
1

2πi

∫
∂Bs(z0)

f(z)

(z − z0)n+1
dz,

which is independent of s ∈ (r,R).
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Proof. Fix z ∈ Ar,R(z0). Then there exist r < r1 < R1 < R such that z ∈ Ar1,R1(z0) and Ar1,R1(z0) ⊂ U .
Therefore Proposition 1.37 yields that

f(z) =
1

2πi

∫
∂BR1

(z0)

f(ζ)

ζ − z
dζ − 1

2πi

∫
∂Br1 (z0)

f(ζ)

ζ − z
dζ. (1)

Similar to the proof of Theorem 1.18 we have that

1

2πi

∫
∂BR1

(z0)

f(ζ)

ζ − z
dζ =

1

2πi

∫
∂BR1

(z0)

f(ζ)

ζ − z0

1

1− z−z0
ζ−z0

dζ
geometric

series=
1

2πi

∫
∂BR1

(z0)

∞∑
n=0

f(ζ)(z − z0)n

(ζ − z0)n+1
dζ

uniform
convergence

=

∞∑
n=0

1

2πi

∫
∂BR1

(z0)

f(ζ)

(ζ − z0)n+1
dζ(z − z0)n.

Writing

− 1

ζ − z
=

1

z − ζ
=

1

z − z0

1

1− ζ−z0
z−z0

=

∞∑
n=0

(ζ − z0)n

(z − z0)n+1
=

−∞∑
n=−1

(z − z0)n

(ζ − z0)n+1

for ζ ∈ ∂Br1(z0) we conclude by the same reasoning as above that

− 1

2πi

∫
∂Br1 (z0)

f(ζ)

ζ − z
dζ =

−∞∑
n=−1

1

2πi

∫
∂BR1

(z0)

f(ζ)

(ζ − z0)n+1
dζ(z − z0)n.

Moreover, since r1, R1 ∈ (r,R) we can apply Lemma 1.35 to infer that for any s ∈ (r,R)

1

2πi

∫
∂BR1

(z0)

f(ζ)

(ζ − z0)n+1
dζ =

1

2πi

∫
∂Br1 (z0)

f(ζ)

(ζ − z0)n+1
dζ =

1

2πi

∫
∂Bs(z0)

f(ζ)

(ζ − z0)n+1
dζ = cn.

Hence the claim follows from (1). �

Having derived the local Laurent series representation of holomorphic functions let us study such series
a little bit more in detail. Given a series of the form∑

n∈Z
cn(z − z0)n =

−1∑
n=−∞

cn(z − z0)n︸ ︷︷ ︸
=:h(z)

+

∞∑
n=0

cn(z − z0)n︸ ︷︷ ︸
=:g(z)

we call it a Laurent series and h the principal part of the Laurent series and g the regular part of the
Laurent series. We call a Laurent series (uniformly, pointwise, etc.) convergent if both principal and
regular part converge (uniformly, pointwise, etc.). In the lemma below we collect some properties of the
principal part.

Lemma 1.39. Let z0 ∈ C and (c−k)∞k=1 ⊂ C. Define

r = lim sup
k→+∞

k
√
|c−k| ∈ [0,+∞].

Then the series

h(z) =

∞∑
k=1

c−k(z − z0)−k

converges for all z ∈ Ar,+∞(z0) := {z ∈ C : |z − z0| > r} and diverges for z ∈ Br(z0). Moreover, it
converges uniformly on Aρ,+∞(z0) for every ρ > r. In particular, it is holomorphic on Ar,+∞(z0) and

lim
|z|→+∞

h(z) = 0.

Proof. It suffices to note that h is a power series in the variable ζ = (z − z0)−1, r is the inverse of the
convergence radius of this power series and |ζ| < 1

r if and only if |z − z0| > r with the convention that
1/0 = +∞ and 1/+∞ = 0. The claim then follows from the corresponding statements for power series,
noting that |z| → +∞ if and only if ζ → 0. �
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From the previous lemma and the fact that a power series converges on BR(z0), where R denotes its

radius of convergence while it diverges outside BR(z0), it follows that the natural domain of Laurent series
is given by the annulus Ar,R(z0). Next we prove that the coefficients of the Laurent series representation
of a holomorphic function are unique.

Corollary 1.40. Assume that f : Ar,R(z0) → C is holomorphic and given by a Laurent series of the
form

f(z) =
∑
n∈Z

cn(z − z0)n.

Then cn is given by

cn =
1

2πi

∫
∂Bs(z0)

f(z)

(z − z0)n+1
dz,

which is independent of s ∈ (r,R).

Proof. Due to Lemma 1.39 and the corresponding property for power series we know that the Laurent
series representing f converges uniformly on every annulus Arr,R1

(z0) with r < r1 < R1 < R. Hence for
s ∈ (r,R) we may exchange integration and summation, so that∫

∂Bs(z0)

f(z)

(z − z0)n+1
dz =

∫
∂Bs(z0)

∑
k∈Z

ck(z − z0)k−n−1 dz =
∑
k∈Z

ck

∫
∂Bs(z0)

(z − z0)k−n−1 dz.

For k − n − 1 6= −1 the integrand has a primitive on C \ {z0}, so that the integral vanishes. For k = n
the integral equals 2πi (see also Example 1.8), so that the right hand side equals 2πicn which proves the
claim. �

Next we study the connection of the coefficients (cn)n∈N with the type of singularities when f is defined
on A0,R(z0) for some R > 0. The following proposition allows to easily determine the type of singularities
of many functions.

Proposition 1.41. Let U ⊂ C be open and f : U → C be holomorphic. Assume that z0 ∈ C \ U is
an isolated singularity of f and let (cn)n∈Z be the coefficients of the Laurent series expansion of f on
A0,R(z0) (R > 0 small enough such that A0,R(z0) ⊂ U). Then z0 is a

(i) removable singularity if and only if ck = 0 for all k ≤ −1;
(ii) a pole of order m ∈ N if and only if c−m 6= 0 and ck = 0 for all k < −m.

(iii) an essential singularity if and only if ck 6= 0 for infinitely many k ≤ −1.

Proof. (i) If ck = 0 for k ≤ −1 then the Laurent series reduces to a power series with a positive radius
of convergence. Hence z0 is a removable singularity by exercise H 1.3. For the converse statement note
that, denoting the holomorphic extension still by f , we have for k ≤ −1 and s ∈ (0, r) that

ck =
1

2πi

∫
∂Bs(z0)

f(z)

(z − z0)k+1︸ ︷︷ ︸
holomorphic on Br(z0)

dz = 0,

where we used Cauchy’s integral theorem on the star-shaped set Br(z0).
(ii) If z0 is a pole of order m ∈ N, then the Laurent series of (z − z0)mf(z) reads

(z − z0)mf(z) =
∑
k∈Z

ck(z − z0)k+m =
∑
j∈Z

cj−m(z − z0)j .

Applying (i) it follows that cj−m = 0 for all j ≤ −1 or equivalently ck = 0 for k < −m. Moreover, since
m is minimal it follows again from (i) that cj−m+1 6= 0 for some j ≤ −1 or equivalently ck 6= 0 for some
k ≤ −m. Hence the only possibility is c−m 6= 0. On the other hand, if c−m 6= 0 and ck = 0 for all k < −m,
then the Laurent series of (z − z0)mf(z) reads

(z − z0)mf(z) =

∞∑
k=−m

ck(z − z0)k+m =

∞∑
j=0

cj−m(z − z0)j ,
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so that by (i) z0 is a removable singularity of (z − z0)mf(z). Moreover, for ` < m it follows by the same
argument that the Laurent series representation of (z− z0)`f(z) contains a non-vanishing principal part,
so that by (i) z0 cannot be a removable singularity of (z − z0)`f(z). Thus z0 is a pole of order m.

(iii) z0 is an essential singularity if and only if neither (i) nor (ii) are true. This is the case if and only
if ck 6= 0 for infinitely many k ≤ −1. �

Using the previous result it follows easily that sin(1/z), cos(1/z) or e1/z have an essential singularity
in the origin.

Remark 1.42. The behavior near an essential singularity is quite chaotic. Indeed, Picard’s great theorem
says that if f has an essential singularity in z0 then there exists at most one value w0 ∈ C that for each
ε > 0 the function f : Bε(z0) \ {z0} → C is surjective onto C \ {w0}, i.e. f omits at most one value no
matter how close to the singularity.

1.5. The residue theorem and applications. In this final subsection on complex analysis we will see
how the theory on the Laurent series representation allows to evaluate some integrals quite easily.

Definition 1.43 (Winding number of a curve). Let γ : [a, b]→ C be a closed curve (as usual we assume
that it is piecewise C1). Let c ∈ C be such that c 6= γ(t) for all t ∈ [a, b]. The winding number of γ around
c is defined by

ν(γ, c) :=
1

2πi

∫
γ

(z − c)−1 dz.

The winding number describes how often the curve γ winds around c counterclockwise (it counts
clockwise winding with a minus sign)6. We first establish some elementary properties of the winding
number (not relying on the previous footnote, but try to first convince yourself about the statements
with the informal definition of the winding number).

Lemma 1.44. Let γ : [a, b]→ C be a closed curve. Set Γ = γ([a, b]) as the trace of γ.

(i) ν(γ, c) ∈ Z for all c ∈ C \ Γ;
(ii) If D ⊂ C is a domain with D ∩ Γ = ∅, then ν(γ, c) is independent of c ∈ D;

(iii) If c ∈ C is such that λc /∈ Γ for all λ ≥ 1, then ν(γ, c) = 0. In particular, lim
|z|→+∞

ν(γ, z) = 0.

Proof. (i) Define the functions f, F : [a, b]→ C by

f(t) =

∫ t

a

γ′(s)

γ(s)− c
ds, F (t) = e−f(t)(γ(t)− c).

Then f and F are piecewise C1-functions with f(a) = 0 and f(b) = 2πiν(γ, c). Computing the derivative
of F in every point where f and γ are differentiable we obtain that

F ′(t) = −e−f(t)f ′(t)(γ(t)− c) + e−f(t)γ′(t) = −e−f(t) γ′(t)

γ(t)− c
(γ(t)− c) + e−f(t)γ′(t) = 0.

Since F is continuous and piecewise continuously differentiable this implies that F is constant as it cannot
jump at the points where it is not differentiable. Since F (t) 6= 0 for all t ∈ [a, b] this constant is different
from zero. Since γ(a) = γ(b) this implies that

1 =
F (b)

F (a)
= ef(a)−f(b) = e−2πiν(γ,c).

6Here is a helpful argument using the following non-trivial result. Let γ : [a, b] → C be a piecewise C1-curve such that

c /∈ γ([a, b]). Then there exist piecewise C1-polar coordinates r, θ such that γ(t) = c + r(t)eiθ(t). The winding number

should be defined by the increment of the angle along the curve, i.e., ν(γ, c) =
θ(b)−θ(a)

2π
. Inserting the polar coordinate

representation of γ we find indeed that∫
γ

(z − c)−1 dz =

∫ b

a

r′(t)eiθ(t) + r(t)ieiθ(t)θ′(t)

r(t)eiθ(t)
dt =

∫ b

a

r′(t)

r(t)
+ iθ′(t) dt = log(r(b))− log(r(b))︸ ︷︷ ︸

=0 since γ is closed

+i(θ(b)− θ(a)).
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This is equivalent to ν(γ, c) ∈ Z.
(ii) The function z 7→ ν(γ, z) is continuous on C \ Γ. Since D ⊂ C \ Γ is path-connected, the image

ν(γ,D) has to be path-connected, too. Since Z is discrete the only path-connected sets of Z are points.
Hence ν(γ, ·) is constant on D.

(iii) Note that the set C \ {λc : λ ≥ 1} is star-shaped. Hence there exists a primitive of z 7→ (z − c)−1

on this set. Thus the integral defining the winding number vanishes since γ is closed. The second claim
follows from the fact that Γ is a bounded set, so that for |z| large enough λz /∈ Γ for all λ ≥ 1. �

The winding number appears naturally in the integration of Laurent series. Here also the importance
of the coefficient c−1 (which is called residue) becomes evident.

Lemma 1.45. Let f : Ar,R(z0)→ C be holomorphic with Laurent series representation

f(z) =
∑
k∈Z

ck(z − z0)k.

Let γ : [a, b]→ Ar,R(z0) be a closed, piecewise C1-curve. Then∫
γ

f dz = 2πiν(γ, z0)c−1.

Proof. According to Lemma 1.39 and the general properties of power series the Laurent series converges
uniformly on Ar1,R1(z0) for every r < r1 < R1 < R. We chose r1 and R1 such that

z0

γ

Figure 4. Black: the annulus Ar,R(z0); red: the annulus Ar1,R1
(z0).

r < r1 < min
t∈[a,b]

|γ(t)− z0| ≤ max
t∈[a,b]

|γ(t)− z0| < R1 < R.

See also Figure 4. Since γ([a, b]) ⊂ Ar1,R1
(z0) the uniform convergence of the Laurent series allows to

interchange summation and integration and we obtain∫
γ

f dz =

∫
γ

∑
k∈Z

ck(z − z0)k dz =
∑

k∈Z\{−1}

ck

∫
γ

(z − z0)k dz︸ ︷︷ ︸
=0 (primitive!)

+c−1

∫
γ

(z − z0)−1 dz = 2πic−1ν(γ, z0).

�

Definition 1.46. Let f : Ar,R(z0)→ C be holomorphic with Laurent series representation

f(z) =
∑
k∈Z

ck(z − z0)k.
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Then the residue of f in z0 is defined by Res(f, z0) = c−1. Note that by Theorem 1.38

Res(f, z0) =
1

2πi

∫
∂Bs(z0)

f dz

for any s ∈ (r,R). You will see further properties of the residue in the exercises.

The next result is one of the main theorems in complex analysis.

Theorem 1.47 (The residue theorem). Let U ⊂ C be a star-shaped domain and S ⊂ U be a finite set.
Assume that f : U \ S → C be holomorphic and let γ : [a, b] → U \ S be a closed, piecewise C1-curve.
Then ∫

γ

f dz = 2πi
∑
c∈S

Res(f, c) ν(γ, c).

Remark 1.48. The residue theorem holds under the sole assumption that γ is null-homotopic in U and
U is open. This will be clear from the proof since we could use the second version of Cauchy’s integral
theorem instead of Theorem 1.13.

Proof of Theorem 1.47. f is not necessarily holomorphic on U since the singularities in s ∈ S might be
non-removable. The idea is to subtract all principal parts so that the modified function has only removable
singularities. Then the relevant contributions to the curve integral come from these modifications for which
we can apply Lemma 1.45. Here come the details. For s ∈ S let fs =

∑−∞
k=−1 ck(z − s)k be the principal

part of the Laurent series expansion of f around s (thus the coefficients depend on the point s). According
to Lemma 1.39 the function fs is holomorphic on C \ {s}. Define the holomorphic function g : U \S → C
by

g(z) = f(z)−
∑
s∈S

fs(z).

Then by construction each s ∈ S is a removable singularity since locally around any fixed s0 ∈ S we have

g(z) =
∑
k∈Z

ck(z − s0)k −
−∞∑
k=−1

ck(z − s0)k︸ ︷︷ ︸
=fs0 (z)

−
∑

s∈S\{s0}

fs(z) =

∞∑
k=0

ck(z − s0)k −
∑

s∈S\{s0}

fs(z)︸ ︷︷ ︸
holomorphic in a

neighborhood of s0

.

Both functions on the right hand side can be extended holomorphically to s0. Call the holomorphic
extension of g to U still g. Then due to Cauchy’s integral theorem (combine Theorem 1.13 with Lemma
1.7) it follows that

0 =

∫
γ

g dz =

∫
γ

f dz −
∑
c∈S

∫
γ

fc dz
Lemma 1.45

=

∫
γ

f dz − 2πi
∑
c∈S

Res(f, c)ν(γ, c),

where Lemma 1.45 can be applied since fs is holomorphic on A0,+∞(s) which contains γ([a, b]). This
proves the claim. �

The residue theorem has several interesting applications which we will now discuss as a final part of
our introduction to complex analysis.

Corollary 1.49 (Integration of rational functions of sin and cos). Let R : R2 → C be a rational function
in two variables that is finite on ∂B1(0). Then∫ 2π

0

R(cos(t), sin(t)) dt = 2π
∑

z∈B1(0)

Res(R̃, z),

where

R̃(z) =
1

z
R
(

1
2

(
z + 1

z

)
, 1

2i

(
z − 1

z

) )
.

Proof. See exercises including some examples. �
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The next result provides a powerful tool to evaluate some improper real integrals where the primitive
might not be known explicitly. We shall assume that the improper integrals exist. Conditions for this
assumption are taught in the first analysis courses.

Corollary 1.50 (Evaluation of improper integrals). Let S ⊂ C \ R be a finite set and f : C \ S → C be

holomorphic. Assume that the integral
∫ +∞
−∞ f(x) dx exists and that lim

|z|→+∞
zf(z) = 0. Then

∫ +∞

−∞
f(x) dx = 2πi

∑
s∈S∩{Im(z)>0}

Res(f, s).

Proof. In what follows we apply a general strategy to evaluate integrals via the residue theorem. It consists
of integrating over certain curves in C and showing that some contributions of the integral (usually those
in C\R) become negligible when some parameter varies. The non-vanishing part is then characterized by
the residue theorem. Here we use growing half circles. For R� 1 define the closed curve γR : [0, 2]→ C
by

γR(t) =

{
−R(1− t) + tR if t ∈ [0, 1],

Reiπ(t−1) if t ∈ (1, 2].

See also Figure 5. Let us write γR = γR,1+γR,2, where γR,1 denote straight line from −R to R and γR,2 the

0 R−R

Figure 5. The curve γR representing a half-circle with radius R around the origin.

arc of circle on ∂BR(0) from R to −R. Note that for all s ∈ S∩BR(0)∩{Im(z) > 0} we have ν(γR, s) = 1.
Moreover, since S is finite it follows that for R large enough we have S ∩ {Im(z) > 0} ⊂ BR(0), so that
from the residue theorem we deduce that

2πi
∑

s∈S∩{Im(z)>0}

Res(f, s) =

∫ R

−R
f(x) dx+

∫
γR,2

f dz.

We argue that the curve integral over γR,2 vanishes when R→ +∞. Indeed, by the fundamental estimate
we have∣∣∣∣∣

∫
γR,2

f dz

∣∣∣∣∣ ≤ L(γR,2) sup
z∈γR,2

|f(z)| ≤ πR sup
|z|=R

|f(z)| = π sup
|z|=R

|zf(z)| → 0 as R→ +∞,

where we used the assumption on zf(z). The other integral converges to the improper integral. Hence we
proved the claim. �

As a final application we discuss Fourier transformations in one dimension. At this point of the course
it is not important to know about the Fourier transformation. We will discuss it more in detail later.
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Corollary 1.51 (Fourier transformation for certain functions in 1D). Let S ⊂ C \ R be a finite set and
f : C \ S → C be holomorphic. Assume that lim

|z|→+∞
f(z) = 0. Then

∫ ∞
−∞

f(x)eiωx dx =


2πi

∑
s∈S∩{Im(z)>0}

Res(f(z)eiωz, s) if ω > 0,

−2πi
∑

s∈S∩{Im(z)<0}

Res(f(z)eiωz, s) if ω < 0.

If ω = 0 the improper integral might not be defined.

Proof. Similar to the previous proof we integrate over a certain growing curve and apply the residue
theorem. For the moment assume that ω > 0. Consider the square Q and the curves γ1, γ2, γ3 in Figure

r0−s

r + iq = r + i(r + s)−s+ iq

γ1γ3

γ2

Q

Figure 6. The square used to apply the residue theorem.

6 with r, s > 0 and q = r+ s. (Since we do not assume here that the improper integrals exist we need the
two parameters r, s to show its existence.) Note that the curves γi depend on r and s. Moreover, for r, s
large enough it holds that S ∩ {Im(z) > 0} ⊂ Q. Orienting ∂Q counterclockwise we have by the residue
theorem that

2πi
∑

s∈S∩{Im(z)>0}

Res(f(z)eiωz, s) =

∫
∂Q

f(z)eiωz dz =

∫ r

−s
f(x)eiωx dx+

3∑
i=1

∫
γi

f(z)eiωz dz. (2)

We show that for i = 1, 2, 3 it holds that

lim
r,s→+∞

∫
γi

f(z)eiωz dz = 0,

which then proves that the improper integral exists and equals the claimed value on the left hand side in
(2). We start with the curve γ2. Note for z ∈ γ2 it holds that |eiωz| = e−ωIm(z) = e−ωq since the imaginary
part equals q on the whole curve γ2. The fundamental estimate then implies∣∣∣∣∫

γ2

f(z)eiωz dz

∣∣∣∣ ≤ sup
z∈γ2
|f(z)|e−ωqL(γ2) = sup

z∈γ2
|f(z)|e−ωqq ≤ sup

z∈γ2
|f(z)|, (3)
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where we used that e−ωqq ≤ 1 for q = r + s large enough. Next note that we can parameterize γ1 via
γ1(t) = r + it with t ∈ [0, q]. The fundamental estimate does help here, so we use a stronger bound via∣∣∣∣∫

γ1

f(z)eiωz dz

∣∣∣∣ =

∣∣∣∣∫ q

0

f(r + it)eiω(r+it)i dt

∣∣∣∣ ≤ ∫ q

0

|f(r + it)|e−ωt dt ≤ sup
z∈γ1
|f(z)|

∫ q

0

e−ωt dt

= sup
z∈γ1
|f(z)| 1

ω
(1− e−qω) ≤ sup

z∈γ1
|f(z)| 1

ω
. (4)

Using the same strategy one obtains that also∣∣∣∣∫
γ3

f(z)eiωz dz

∣∣∣∣ ≤ sup
z∈γ3
|f(z)| 1

ω
. (5)

Since for all curves γi with i = 1, 2, 3 the modulus of all points converges uniformly to +∞ when
r, s→ +∞ it follows by the assumption on f that

lim
r,s→+∞

sup
z∈γi
|f(z)| = 0

for i = 1, 2, 3. Combined with (3),(4) and (5) this proves the claim in the case ω > 0.
If ω < 0 then one uses the same strategy but with a square in the lower half plane. In this case q < 0,

so that still ωq > 0. The details are left to the interested reader. �

This was the last topic about complex analysis. Next we will start with a brief summary of abstract
Lebesgue integration.

2. The Lebesgue integral: an introduction mostly without proofs

Recall that the Riemann integral of a continuous function f is defined via an approximation with
Riemann sums discretizing the interval (say [a, b]) where f is defined. The idea of Lebesgue was to
discretize not the domain, but the image of f and approximate also discontinuous functions f by a
sequence of functions taking only finitely many values. The preimages of those values might be quite
irregular sets, so that we need to measure their length in order to define an integral. More precisely, let
f : [a, b]→ R be a function that attains only finitely many values a1, . . . , an. Then we would like to define
its integral by ∫

f dx =

n∑
i=1

ai length(f−1(ai)).

So in order to construct an integral following Lebesgue’s idea we need to define a notion of length for
a large class of sets (the larger the class, the more functions we can integrate). On the one hand the
mathematician Felix Hausdorff noted already in 1914 that the usual intuition of length, area or volume
cannot be extended to all subsets of Rd in a consistent way.

On the other hand, in case we can define a suitable notion of length, area or volume, we can perform
integration on more abstract spaces. The correct term is the measure of a set. For instance, in probability
theory we can consider the set {1, 2, 3, 4, 5, 6} as the outcome of rolling a dice and we associate the measure
1/6 to each event (if the dice is fair). In this way we could integrate functions f : {1, 2, 3, 4, 5, 6, } → R.

In what follows we start from a very abstract point of view. First we define the objects which we want
to measure.

Definition 2.1 (σ-algebra). Let Ω be a non-empty set and denote by P(Ω) the set of all subsets of Ω.
A subset F ⊂ P(Ω) is called a σ-algebra (on Ω) if

(i) Ω ∈ F ;
(ii) A ∈ F =⇒ Ac := Ω \A ∈ F ;
(iii) (An)n∈N ⊂ F =⇒

⋃
n∈NAn ∈ F .

The sets A ∈ F are called (F-)measurable sets.
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So far this definition is not very enlightening. For every set Ω there are the trivial σ-algebras {∅,Ω}
and P(Ω). Note that by (i) and (ii) we always have ∅ ∈ F . Then also all finite unions are contained in F
and since (⋃

n∈N
An

)c
=
⋂
n∈N

Acn

also all finite and countable intersections.

Definition 2.2. Let Ω be a non-empty set.

(i) If B ⊂ P(Ω) then there exists a smallest σ-algebra containing B (cf. exercise H 6.5). It is denoted
by σ(B) and is called the σ-algebra generated by B;

(ii) if Ω = Rd and B denotes the set of all open subsets of Rd we write σ(B) = B(Rd). This is called
the Borel σ-algebra on Rd. It also contains/is generated by the set of all closed subsets;

(iii) if F ⊂ P(Ω) is a σ-algebra and C ⊂ Ω the trace σ-algebra on C is defined by FC = {A∩C : A ∈
F}. One can show that FC is a σ-algebra on C.

Next we define what it means to measure sets in a σ-algebra. Again the definition is abstract and just
states the minimal requirements.

Definition 2.3. Let F be a σ-algebra on a non-empty set Ω. A non-negative function µ : F → [0,+∞]
is called a measure if

(i) µ(∅) = 0;
(ii) If (An)n∈N ⊂ F is a sequence of pairwise disjoint subsets, then µ is countably additive in the

sense that
µ(
⋃
n∈N

An) =
∑
n∈N

µ(An).

The triplet (Ω,F , µ) is called measure space.

Note that a measure is also finitely additive since A1 ∪ . . . ∪Ak = A1 ∪ . . . ∪Ak ∪ ∅ ∪ ∅ ∪ . . ..
On any set Ω we can define the counting measure on P(Ω) by

µ(A) =

{
cardinality of A if A contains finitely many elements,

+∞ otherwise.

Other measures are the so-called Dirac measure δω (cf. exercise H 6.5) or the trivial measure µ ≡ 0. In
order to define an integral we need the notion of measurable functions.

Definition 2.4. Let Ω1,Ω2 be two non-empty sets with σ-algebras F1 and F2 on Ω1 and Ω2, respectively.
A function f : Ω1 → Ω2 is called (F1-F2)-measurable if f−1(A) ∈ F1 for all A ∈ F2.

Let us collect some abstract results about measurability that turn out to be useful later on.

Lemma 2.5. Let Ω1,Ω2,Ω3 be non-empty sets with σ-algebras F1,F2 and F3, respectively.

a) If f : Ω1 → Ω2 and g : Ω2 → Ω3 are measurable, then the composition g ◦ f : Ω1 → Ω3 is also
measurable.

b) If F2 = σ(B) for some B ⊂ P(Ω2), then f : Ω1 → Ω2 is already measurable if f−1(A) ∈ F1 for
all A ∈ B.

Proof. Part a) follows from the fact that for every A ∈ F3 we have by the measurability of f and g that

(g ◦ f)−1(A) = f−1(g−1(A)︸ ︷︷ ︸
∈F2

) ∈ F1.

In order to proof b), note that the set

A := {A ⊂ Ω2 : f−1(A) ∈ F1}
is a σ-algebra on Ω2 (this is left as an exercise for the interested reader, but as such it is not relevant for
the exam). Since B ⊂ A by assumption it follows that F2 = σ(B) ⊂ σ(A) = A, where in the last equality
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we used that A is already a σ-algebra, hence the smallest one containing A. Thus by definition of A it
follows that f is measurable. �

Our goal is to define the integral of as many measurable functions f : Ω → R as possible, where we
equip the image space R with the Borel σ-algebra7. We start with the case of measurable functions that
attain only finitely many values.

Definition 2.6. Let (Ω,F , µ) be a measure space. Denote by S+(Ω) the class of all non-negative F-
measurable functions that attain only finitely many values, i.e., we can write

f =

n∑
i=1

ai1Ai

with ai ∈ [0,+∞) for all i = 1, . . . , n, (Ai)
n
i=1 pairwise disjoint and measurable, and the indicator function

1Ai(ω) =

{
1 if ω ∈ Ai,
0 otherwise.

The functions in S+(Ω) are called non-negative simple functions. We define their integral over Ω with
respect to µ by ∫

Ω

f dµ =

n∑
i=1

ai µ(Ai).

Remark 2.7. The representation of simple functions is not unique. However, the definition of the integral
does not depend on the representation of simple functions. To prove this, note that if

∑n
i=1 ai1Ai =∑m

j=1 bi1Bi and Ai ∩ Bj 6= ∅ then, for ω ∈ Ai ∩ Bj we have ai = f(ω) = bj . Moreover, by adding

an+1 = 0, bm+1 = 0 and An+1 = {f = 0} = Bm+1 (if necessary) we can assume that
⋃
iAi = Ω =

⋃
j Bj .

Hence by finite additivity of µ
n∑
i=1

aiµ(Ai) =

n∑
i=1

aiµ
( m⋃
j=1

Bj︸ ︷︷ ︸
=Ω

∩Ai
)

=

n∑
i=1

m∑
j=1

aiµ(Ai ∩Bj) =

m∑
j=1

n∑
i=1

bjµ(Ai ∩Bj) =

m∑
j=1

bjµ(Bj).

As a next step we define the integral of general measurable non-negative functions f : Ω → [0,+∞).
As announced, this is achieved via a discretization of the image as performed in the proof of the next
proposition. We remark that the statement is independent of the measure µ.

Proposition 2.8. Let (Ω,F , µ) be a measure space and f : Ω → [0,+∞) be F-measurable. Then there
exists a sequence of simple functions fn ∈ S+(Ω) such that fn ≤ fn+1 and f = supn fn.

Proof. For fixed n ∈ N we discretize the image [0,+∞) with n2n consecutive intervals of size 2−n and
the unbounded rest [n,+∞). Here come the formulas: for any natural number k ∈ {0, . . . , n2n} define
the sets Ak,n by

Ak,n =

{
{w ∈ Ω : k2−n ≤ f(ω) < (k + 1)2−n} if 0 ≤ k < n2n,

{w ∈ Ω : f(ω) ≥ n} if k = n2n.

Note that [a, b) ∈ B(R) for all a ∈ R and b ∈ R ∪ {+∞} since it is the intersection of an open and a
closed set. Hence it follows that every set Ak,n is F-measurable as the preimage of a Borel-measurable

set. Moreover, for fixed n ∈ N the family (Ak,n)n2n

k=0 is pairwise disjoint since the sets are preimages of
disjoint intervals under f . Thus we can define a function fn ∈ S+(Ω) by

fn =

n2n∑
k=0

k2−n1Ak,n .

7Sometimes also the values ±∞ are allowed which requires a σ-algebra on [−∞,∞]. One takes the σ-algebra generated
by the half-open intervals [a, b) with a ∈ [−∞,∞) and b ∈ R.
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By construction fn ≤ fn+1 since each interval in the discretization gets bisected when n increases by 1
(and new intervals in the range [n, n+ 1) are added). Moreover, for any ω ∈ Ω we have that

0 ≤ f(ω)− fn(ω) ≤ 2−n ∀n > f(ω).

Thus by monotonicity in n we have f(ω) = limn fn(ω) = supn fn(ω). �

The previous proposition allows us to define the Lebesgue integral for general non-negative measurable
functions.

Definition 2.9. Let (Ω,F , µ) be a measure space and f : Ω→ [0,+∞) be F-measurable. Then we define∫
Ω

f dµ = sup
n∈N

∫
Ω

fn dµ,

where fn is a sequence of simple functions as in Proposition 2.8. One can show that this definition does
not depend on the particular choice of the sequence fn of simple functions.

Note that the integral of a non-negative function might equal +∞. Finally, we define the integral
of measurable functions without any sign condition. To this end, we decompose a measurable function
f : Ω→ R into its positive and negative part f+ and f− defined as

f+(ω) = max{f(ω), 0}, f−(ω) = −min{f(ω), 0}.
Then f = f+ − f− and both f+, f− : Ω → [0,+∞). Moreover, one can show that both f+, f− are
measurable.8 The idea is to define the integral of f as the difference of the integrals of f+ and f−. This
is contained in the next definition.

Definition 2.10. Let (Ω,F , µ) be a measure space and f : Ω → R be measurable. Denote by f+ and
f− the positive and negative part of f defined above. We say that f is Lebesgue integrable if and only if∫

Ω

f+ dµ < +∞ and

∫
Ω

f− dµ < +∞,

where the integrals are defined as in Definition 2.9. In this case we define the integral of f over Ω by∫
Ω

f dµ =

∫
Ω

f+ dµ−
∫

Ω

f− dµ.

Before we state some properties of the Lebesgue integral we need to study which real-valued functions
are measurable. This question of course depends on the σ-algebra, but for now we treat only operations on
measurable functions. We omit the proof of the following lemma which is rather technical using different
sets that generate the Borel σ-algebra.

Lemma 2.11. Let (Ω,F , µ) be a measure space and f, g : Ω→ R be measurable. Moreover, let (fn)n∈N :
Ω→ R be a sequence of measurable functions. Then the following functions are measurable9:

(i) f + g and f − g;
(ii) f · g and f/g (the latter provided g(ω) 6= 0∀ω ∈ Ω);

(iii) sup
n∈N

fn and inf
n∈N

fn;

(iv) lim inf
n→+∞

fn and lim sup
n→+∞

fn.

In the next lemma we state some elementary properties of the Lebesgue integral. We leave the proof
(which follows essentially by going through the approximation steps) to the reader.

Lemma 2.12. Let (Ω,F , µ) be a measure space and f, g : Ω→ R be integrable (this always implies that
they are measurable). Then

8Note that the function x 7→ max{x, 0} is continuous. By Lemma 2.5 any continuous function is (B(R)-B(R))-measurable
and the composition of measurable functions remains measurable. This clarifies the measurability of f+. To show that f−

is measurable we note that the multiplication by −1 is also continuous, so that −f is measurable and −min{f(ω), 0} =
max{−f(ω), 0}.

9The quantities in (iii) and (iv) might take the values ±∞. Measurability is understood in the sense of Footnote 7.
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(i)

∫
Ω

αf + βg dµ = α

∫
Ω

f dµ+ β

∫
Ω

g dµ for all α, β ∈ R;

(ii) if f ≤ g, then

∫
Ω

f dµ ≤
∫

Ω

g dµ;

(iii) |f | is integrable10 and ∣∣∣∣∫
Ω

f dµ

∣∣∣∣ ≤ ∫
Ω

|f |dµ.

Next we introduce the integral over a subset.

Definition 2.13. Let (Ω,F , µ) be a measure space and f : Ω → R be integrable. Given a measurable
set A ∈ F we define ∫

A

f dµ =

∫
Ω

1Af dµ.

Note that the integrand in the previous definition is well-defined due to Lemma 2.11 since 1A is
measurable if and only if A is a measurable set.

2.1. Convergence theorems. In this subsection we state some important convergence theorems for
sequences of integrable functions. Before we start, we introduce the notion of null sets which are in a
sense negligible for integration theory.

Definition 2.14. Let (Ω,F , µ) be a measure space. A set A ∈ F is called a null set if µ(A) = 0.

Remark 2.15. Some authors don’t require that a null set is measurable, but that it is contained in a
measurable set with measure zero. This difference is somehow irrelevant since one can always complete a
measure space so that every subset of a null set is measurable (cf. exercises). Measure spaces with that
property are called complete.

In the next lemma we prove that if two functions differ only on a null set then their integrals agree.

Lemma 2.16. Let (Ω,F , µ) be a measure space and f, g : Ω → R be integrable. If the measurable set
{f 6= g} is a null set, then ∫

Ω

f dµ =

∫
Ω

g dµ.

Proof. By linearity it suffices to consider the case g ≡ 0. We prove that the integral of the positive part
f+ vanishes (the proof for the negative part f− is analogous). Set A = {f+ 6= 0} which is measurable
since R \ {0} is open, hence a Borel set. Note that 1A is a simple function in S+(Ω). Take a sequence of
simple functions f+

n ∈ S+(Ω) as in Proposition 2.8 for f+. Write f+
n =

∑mn
i=1 a

n
i 1Ani . Then gn := f+

n 1A
is a sequence of simple functions such that gn ≤ gn+1 and supn gn = f±1A = f+. Hence it is admissible
for defining the Lebesgue integral of f+ and thus∫

Ω

f+ dµ = sup
n∈N

∫
Ω

1Af
+
n dµ =

∫
Ω

mn∑
i=1

ani 1Ani ∩A dµ = sup
n∈N

mn∑
i=1

ani µ(Ani ∩A)︸ ︷︷ ︸
0≤µ(Ani ∩A)≤µ(A)≤µ({f 6=0})=0

= 0.

Here we used that by definition 1A1Ani = 1A∩Ani and that measures are monotone with respect to set
inclusion since for any measurable sets B ⊂ C we have by additivity that

µ(C) = µ(C \B ∪B) = µ(C \ C)︸ ︷︷ ︸
≥0

+µ(B) ≥ µ(B).

�

In order to understand null sets a bit better we next establish some general properties of measures.

Lemma 2.17. Let (Ω,F , µ) be a measure space. Then µ satisfies the following properties for every
A,B ∈ F and (An)n∈N ⊂ F :

10taking the modulus is a continuous operation on R, so that |f | is measurable by Lemma 2.5
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(i) µ(A ∪B) + µ(A ∩B) = µ(A) + µ(B);
(ii) [monotonicity] If A ⊂ B then µ(A) ≤ µ(B);

(iii) If A ⊂ B and µ(A) < +∞, then µ(B \A) = µ(B)− µ(A).

(iv) [σ-subadditivity] µ

(⋃
n∈N

An

)
≤
∞∑
n=1

µ(An).

Proof. Note that for A ⊂ B we can write B = (B \ A) ∪ A and this union is disjoint. Thus by finite
additivity

µ(B) = µ(A) + µ(B \A).

Since µ is non-negative this implies (ii) and moreover (iii) if µ(A) < +∞. Moreover, for general A,B ∈ F
such that µ(A ∩ B) = +∞ the property (i) follows from (ii) as both sides are +∞. If µ(A ∩ B) < +∞
property (i) follows from

µ(A ∪B) = µ(A ∪ (B \A)) = µ(A) + µ(B \A),

µ(B) = µ((B \A) ∪ (B ∩A) = µ(B \A) + µ(B ∩A)

by solving the second equation for µ(B \ A) and inserting the result in the first equation. In order to
show the last property, we make the sets pairwise disjoint by defining B1 = A1 and

Bn = An \

(
n−1⋃
i=1

Ai

)
.

Then by construction the family (Bn)n∈N is pairwise disjoint and⋃
n∈N

An =
⋃
n∈N

Bn.

Since Bn ⊂ An it follows from σ-additivity and (ii) that

µ

(⋃
n∈N

An

)
= µ

(⋃
n∈N

Bn

)
=

∞∑
n=1

µ(Bn) ≤
∞∑
n=1

µ(An).

�

The previous lemma implies that the countable union of null sets is still a null set and that adding
or subtracting a null set to a measurable set does not change its measure. In what follows we say that a
property holds for µ-almost every ω ∈ Ω if it holds for all ω ∈ Ω \N , where N is a null set. The following
convergence results (especially (3)) are the reason why the Lebesgue integral should be preferred over the
Riemann integral.

Theorem 2.18 (Convergence theorems). Let (Ω,F , µ) be a measure space and (fn)n∈N : Ω → R be a
sequence of measurable functions and f : Ω→ R.

(1) [Monotone convergence theorem] If 0 ≤ f1(ω) ≤ f2(ω) ≤ . . . ≤ fn(ω)→ f(ω) for µ-almost every
w ∈ Ω then

lim
n→+∞

∫
Ω

fn dµ =

∫
Ω

f dµ.

(2) [Fatou’s lemma] If fn(ω) ≥ 0 for µ-almost every w ∈ Ω and f(ω) := lim inf
n→+∞

fn(ω) we have∫
Ω

f dµ ≤ lim inf
n→+∞

∫
Ω

fn dµ.

(3) [Dominated convergence theorem] Suppose that f(ω) := lim
n→+∞

fn(ω) exists for µ-almost every

ω ∈ Ω and that there exists an integrable function g : Ω → [0,+∞) such that |fn(ω)| ≤ g(ω) for
µ-almost every ω ∈ Ω. Then

lim
n→+∞

∫
Ω

fn dµ =

∫
Ω

f dµ.
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Remark 2.19. The above theorems (1) and (2) also hold for functions taking the value +∞ (the same
construction as in the proof of Proposition 2.8 allows to approximate non-negative measurable functions
taking the value +∞ and we can define their integral again by approximation with simple functions in
S+(Ω)). Also in the above formulation it is not guaranteed that the integrals in (1) and (2) are finite.
They are in (3) since g is integrable and dominates |fn| and thus also |f |.

Proof. (1) Up to redefining fn(ω) := f(ω) := 0 on the null set where fj(ω) > fj+1(ω) for some j ∈ N we
can assume that the sequence (fn)n∈N is pointwise increasing, so that it follows from Lemma 2.12 that∫

Ω

fn dµ ≤
∫

Ω

f dµ.

Taking the supremum over n ∈ N we deduce again by monotonicity of fn that

lim
n→+∞

∫
Ω

fn dµ = sup
n∈N

∫
Ω

fn dµ ≤
∫

Ω

f dµ.

In order to prove the reverse inequality, take for every n ∈ N a sequence (fk,n)k∈N ⊂ S+(Ω) as in
Proposition 2.8 for fn. Thus fn = supk∈N fk,n and the sequence fk,n is increasing in k. Define

gn := sup
j≤n

fn,j ≤ sup
j≤n

fj = fn.

Then gn is measurable by Lemma 2.11 and attains only finitely many non-negative values. Thus gn ∈
S+(Ω). Moreover, since fn,j is increasing in n it follows that gn ≤ gn+1 since we also take more competitors
with respect to j in the supremum. For m, k ∈ N and n ≥ max{m, k} we have by the monotonicity of
(fk,n) with respect to k that

fk,m ≤ fn,m ≤ gn ≤ fn.
Set g := supn∈N gn. Taking first the supremum in n and then in m, k in the above inequality we conclude
that

f = sup
m∈N

fm = sup
m∈N

sup
k∈N

fk,m ≤ sup
n∈N

gn.

Thus it follows from monotonicity and the definition of the Lebesgue integral of g as the supremum of
integrals of gn that∫

Ω

f dµ ≤
∫

Ω

g dµ = sup
n∈N

∫
Ω

gn dµ ≤ sup
n∈N

∫
Ω

fn dµ = lim
n→+∞

∫
Ω

fn dµ.

This concludes the proof of (1).
In order to show (2) note that by definition of the liminf we have

lim inf
n→+∞

fn = sup
n∈N

gn, gn := inf
m≥n

fm.

The sequence gn is monotone increasing in n and non-negative. We thus can apply (1). First note that
gn ≤ fm for all m ≥ n, so by monotonicity of the Lebesgue integral we have that∫

Ω

gn dµ ≤ inf
m≥n

∫
Ω

fm dµ.

Thus the monotone convergence theorem yields that∫
Ω

lim inf
n→+∞

fn dµ =

∫
Ω

sup
n∈N

gn dµ = sup
n∈N

∫
Ω

gn dµ ≤ sup
n∈N

inf
m≥n

∫
Ω

fm dµ = lim inf
n→+∞

∫
Ω

fn dµ.

Finally, we prove (3). Note that |f | ≤ g for µ-almost every ω ∈ Ω. Up to changing fn, f on a null
set (not affecting their integrals) we may assume that |fn(ω)|, |f(ω)| ≤ g(ω) for all ω ∈ Ω. Thus |f |
is also integrable and by linearity also h := g + |f |. Moreover, by the triangle inequality we have that
|fn(ω)− f(ω)| ≤ |fn(ω)|+ |f(ω)| ≤ g(ω) + |f(ω)| = h(ω), so that

h(ω) = lim
n→+∞

h(ω)− |fn(ω)− f(ω)|︸ ︷︷ ︸
≥0

.
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Fatou’s lemma yields∫
Ω

hdµ ≤ lim inf
n→+∞

∫
Ω

h− |fn − f |dµ =

∫
Ω

hdµ− lim sup
n→+∞

∫
Ω

|fn − f |dµ.

Since h is integrable we can cancel its integral to deduce that

0 ≤ lim sup
n→+∞

∫
Ω

|fn − f |dµ ≤ 0.

Hence the integral above converges to 0. By the triangle inequality for the Lebesgue integral this implies
that ∣∣∣∣∫

Ω

fn − f dµ

∣∣∣∣ ≤ ∫
Ω

|fn − f |dµ→ 0.

This proves the claim. �

In the exercises you will see that the assumption on non-negativity is essential in Fatou’s lemma. The
assumption in the dominated convergence theorem however is not sharp, but can be slightly weakened
using the concept of equiintegrability which we will not introduce in this course.

The dominated convergence theorem can be used to prove the differentiability of parameter-dependent
integrals as stated in the corollary below.

Corollary 2.20. Let U ⊂ Rd be open and (Ω,F , µ) be a measure space. Let f : U × Ω → R be such
that for every x ∈ U the function ω 7→ f(x, ω) is integrable. Assume further that the partial derivative
∂if(x, ω) exists for all x ∈ U and ω ∈ Ω and that there exists an integrable function h : Ω → [0,+∞)
such that |∂if(x, ω)| ≤ h(ω) for all x ∈ U and ω ∈ Ω. Then the function

F (x) =

∫
Ω

f(x, ω) dµ(ω)

is partially differentiable with respect to xi on U and

∂iF (x) =

∫
Ω

∂if(x, ω) dµ(ω).

Here the notation dµ(ω) indicates that we integrate with respect to ω.

Proof. See exercise H 7.5. �

2.2. The space Lp(Ω;µ). Next we introduce a vector space structure on integrable functions. In partic-
ular, we introduce the Hilbert space L2(Ω;µ) which appears in many applications. By Lemma 2.12 (i) the
set of all Lebesgue integrable functions on a measure space (Ω,F , µ) forms a vector space by pointwise
addition and scalar multiplication. For p ∈ [1,+∞] we define

L p(Ω;µ) :=


{f : Ω→ R measurable,

∫
Ω

|f |p dµ < +∞} if p < +∞,

{f : Ω→ R measurable, ∃C > 0 s.t. |f(ω)| ≤ C µ-almost everywhere} if p = +∞.

and for f ∈ L p(Ω;µ) the semi-norms

‖f‖p =


(∫

Ω

|f |p dµ

) 1
p

if p < +∞,

inf{c ∈ R : |f(ω)| ≤ c µ-almost everywhere} if p = +∞.

The quantity ‖f‖p defines only a semi-norm as the following lemma shows:

Lemma 2.21. Let (Ω,F , µ) be a measure space and f, g ∈ L p(Ω;µ). Then

(i) ‖λf‖p = |λ| ‖f‖p for all λ ∈ R;
(ii) ‖f + g‖p ≤ ‖f‖p + ‖g‖p (also known as Minkowski inequality);

(iii) ‖f‖p = 0 ⇐⇒ f = 0 µ-almost everywhere.
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Proof. (i) follows by definition. (ii) will be proven in the exercises. In order to prove the equivalence in
(iii), note that f = 0 µ-almost everywhere implies that |f |p = 0 µ-almost everywhere, so that ‖f‖p = 0
by Lemma 2.16 in the case p < +∞ while it follows from the definition if p = +∞. To prove the converse
statement, note that in the case p = +∞ for every n ∈ N we have |f(ω)| ≤ 1

n for every ω ∈ Ω\Nn, where
Nn is a null set. Then N :=

⋃
n∈NNn is still a null set as a countable union of null sets. On Ω \ N we

have that |f(ω)| = 0. Hence f = 0 µ-almost everywhere. If 1 ≤ p < +∞ we have for every n ∈ N that

1

n
µ({|f |p ≥ 1

n}) ≤
∫
{|f |p≥ 1

n}
|f |p dµ ≤ ‖f‖pp = 0.

Thus

µ({|f |p > 0}) = µ(
⋃
n∈N
{|f |p ≥ 1

n}) ≤
∞∑
n=1

µ({|f |p ≥ 1
n}) = 0.

Hence f = 0 µ-almost everywhere. �

Before we deal with the problem that ‖f‖p = 0 does not imply that f = 0 (which rules out that ‖ · ‖p
defines a norm) we state another inequality that explains the relationship between the spaces L p(Ω;µ)
for different exponents p.

Proposition 2.22 (Hölder inequality). Let f ∈ L p(Ω;µ) and g ∈ L q(Ω;µ) with 1
p + 1

q = 1 (with the

convention that 1/+∞ = 0). Then fg ∈ L 1(Ω;µ) and

‖fg‖1 ≤ ‖f‖p‖g‖q.

Proof. See exercises. �

In order to resolve the problem of defining a norm on integrable functions one introduces equivalence
classes by identifying two functions that agree µ-almost everywhere. We will not recall the mathematical
properties of quotient spaces, but just that the equivalence class of f ∈ L p(Ω;µ) is given by

[f ] = {g ∈ L p(Ω;µ) : g = f µ-almost everywhere}.

The vector space Lp(Ω;µ) is then defined as the quotient space

Lp(Ω;µ) := {[f ] : f ∈ L p(Ω;µ)}.

In that sense elements in Lp(Ω;µ) are not functions but equivalence classes of functions. On this space
‖f‖p defines a norm. We recall properties of this space in the following theorem which we will not prove
here.

Theorem 2.23. Let (Ω,F , µ) be a measure space. Then for p ∈ [1,+∞] the space Lp(Ω;µ) is a Banach
space with the norm ‖ · ‖p. If p = 2 it is a Hilbert space with the scalar product

〈[f ], [g]〉 =

∫
Ω

fg dµ,

which does not depend on the representatives of the equivalence classes [f ] and [g].

Remark 2.24. Since the elements in Lp(Ω;µ) are equivalence classes, one has to be careful with pointwise
evaluations [f ](ω) since they might depend on the representative of the equivalence class. Nevertheless, it
is customary to write f instead of [f ] whenever it is clear that the quantity containing f does not depend
on the representative (e.g. integrals or µ({f > 0})) or one emphasizes that one takes a representative if
this is not the case. In general, if Ω is a subset of Rd then statements like f is continuous, differentiable
etc. are not well-defined. However, for the Lebesgue measure (see next subsection) this usually means
that there is a representative in the equivalence class that satisfies these properties.
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2.3. The Lebesgue measure on Rd. In this subsection we introduce a measure on Rd with the Borel
σ-algebra. Integration with respect to this measure replaces the Riemann integral. The following theorem
contains the defining property.

Theorem 2.25. Let B(Rd) be the Borel σ-algebra on Rd. Then there exists a unique measure µ : B(Rd)→
[0,+∞] such that

µ([a1, b1)× . . .× [ad, bd)) =

d∏
i=1

(bi − ai) ∀ai, bi ∈ R, ai < bi.

The completion (cf. exercise H 7.2) is denoted by (Ω,Ld, λd) and λd is the d-dimensional Lebesgue measure
while sets in the completed σ-algebra Ld are called Lebesgue-measurable.

We will not prove this theorem. Skipping the proof is the main reason for emphasizing that the
introduction is ’mostly without proofs’. Indeed, the argument is quite involved studying in detail which
classes of sets already determine a measure and how to construct measures with a given property.

Let us state some elementary properties of the Lebesgue measure.

• λd(Rd) = +∞;
• λd({x}) = 0 for all x ∈ Rd;
• λd(x+A) = λd(A) for all x ∈ Rd, A ∈ Ld;
• λd(αA) = αdλd(A) for all α > 0, A ∈ Ld.

Here we used the notation x + A := {x + a : a ∈ A} and αA := {αa : a ∈ A}. We collect some further
properties of the Lebesgue measure space in the following lemma.

Lemma 2.26. Let (Rd,Ld, λd) be the Lebesgue measure space. Then

(i) Ld 6= P(Rd)11;
(ii) λd(Rd−1 × {0}) = 0;

(iii) λd(K) < +∞ for every bounded set K ∈ Ld;
(iv) λd(U) > 0 for every non-empty open set U ⊂ Rd.

Proof. (i) The interested reader can find the construction in the optional exercise H 8.6.
(ii) is part of exercise H 8.2.
(iii) Note than any bounded set is contained in some large cube [−n, n)d. Hence by monotonicity its
Lebesgue measure is finite.
(iv) holds true since any non-empty open set contains a small half-open cube which has positive measure.

�

Often we consider functions f defined on measurable subsets Ω ⊂ Rd. In this case we can consider the
trace σ-algebra of Ld on Ω (cf. Definition 2.2) which in the case of a measurable set Ω coincides with the
Lebesgue measurable subsets of Ω. The Lebesgue measure can then naturally be restricted to the trace
σ-algebra and we can speak about Lebesgue-measurable functions on Ω. This allows to define the integral∫

Ω

f dλd

for those functions.
Next we want to state without proof some rather involved theorems on the Lebesgue integral. But

before doing so we compare the Lebesgue integral in 1D with the Riemann integral.

11This property is based on the axiom of choice. An axiom is a property that you assume to be true but cannot be
proven. Very few mathematicians don’t accept the axiom of choice. Without this axiom even B(Rd) = P(Rd). The axiom

of choice is a rather abstract concept. An informal saying goes that every set/function that you can write down is Borel-
measurable. Concerning the difference between Lebesgue and Borel-measurable, one can show that there exists a bijection
between B(Rd) and R while there exists a bijection between Ld and P(R). A general theorem from set theory says that

there cannot exist a bijection between a set and its power set. Hence there are many more Lebesgue measurable sets than
Borel measurable sets on Rd. Note that the existence of a bijection is not necessarily a good measure to compare infinite
sets but the non-existence of a bijection really says that the sets are different. The class of non-measurable subsets also has
the same cardinality as P(R), no matter if you speak about Borel or Lebesgue measurable sets.
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Theorem 2.27. Let f : [a, b]→ R be bounded and Riemann integrable. Then f is also Lebesgue-integrable
and the two integrals agree. Hence we adopt the notation∫ b

a

f dλ1 =

∫ b

a

f(x) dx.

Remark 2.28. The assumption on boundedness is natural since the (proper) Riemann integral is only
defined for bounded functions on a closed interval.

Proof of Theorem 2.27. By definition of Riemann integrability there exists a sequence Pk of partitions
of the interval [a, b] and piecewise constants functions sk, Sk with respect to those partitions such that
Pk+1 is a refinement of Pk, sk ≤ f ≤ Sk and

lim
k→+∞

∫ b

a

sk(x) dx = lim
k→+∞

∫ b

a

Sk(x) dx =

∫ b

a

f(x) dx.

If Pk = {a = xk0 < xk1 < . . . < xkn(k) = b}, then sk and Sk can be defined by

sk =

n(k)∑
i=1

(
inf

x∈(xki−1,x
k
i ]
f(x)

)
1(xki−1,x

k
i ], Sk =

n(k)∑
i=1

(
sup

x∈(xki−1,x
k
i ]

f(x)

)
1(xki−1,x

k
i ]

Since Pk+1 is a refinement of Pk it follows that sk ≤ sk+1 and Sk ≥ Sk+1. Due to the boundedness of
f the sequences (sk)k∈N and (Sk)k∈N are also bounded and therefore they converge pointwise for every
x ∈ [a, b] by monotonicity. Denote their limits by s, S : [a, b]→ R. Since each sk, Sk is measurable (half-
open intervals are Borel-measurable) it follows that s and S are Borel-measurable functions as the limits
of measurable functions. Moreover, by construction s(x) ≤ f(x) ≤ S(x) for all x ∈ [a, b]. By definition the
Riemann integral agrees with the Lebesgue integral for sk and Sk since those are also simple functions
attaining only finitely many values. By the dominated convergence theorem for the Lebesgue integral
(one can take the constant ‖f‖∞ as dominating integrable function) we obtain∫ b

a

S dλ1 = lim
k→+∞

∫ b

a

Sk dλ1 = lim
k→+∞

∫ b

a

Sk(x) dx =

∫ b

a

f(x) dx = lim
k→+∞

∫ b

a

sk(x) dx

= lim
k→+∞

∫ b

a

sk dλ1 =

∫ b

a

sdλ1.

Since S(x) ≥ s(x) for all x ∈ [a, b] it follows from the monotonicity of the Lebesgue integral that

0 ≤
∫ b

a

|S − s|dλ1 =

∫ b

a

S − sdλ1 = 0.

Thus S(x) = s(x) = f(x) for λ1-a.e. x ∈ [a, b]. This implies that f is Lebesgue-measurable as it agrees
with a Borel-measurable function a.e. Moreover,∫ b

a

f dλ1 =

∫ b

a

S dλ1 =

∫ b

a

f(x) dx.

�

Remark 2.29. While the above theorem clarifies that the Lebesgue integral extends the Riemann integral
(for instance the function 1Q is Lebesgue integrable on [0, 1] but not Riemann integrable) the situation is
different for improper Riemann integrals. For instance, on the one hand the function 1Q is also Lebesgue
integrable on (0,+∞) but the improper Riemann integral is not defined. On the other hand, the function

f(x) = sin(x)
x is Riemann integrable on (0,+∞), while it is not Lebesgue integrable because |f | has no

finite integral on (0,+∞). In general the only reason why a function can have an improper Riemann
integral but no Lebesgue integral is that it changes sign which causes cancellations in the Riemann
integral, while the Lebesgue integral needs the integrability of |f | which is less sensitive to sign changes.
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Theorem 2.27 implies in particular that all (proper) Riemann integrals that have been calculated in
previous courses remain the same for the Lebesgue integral. However, the Lebesgue integral provides
many more tools than the Riemann integral (e.g., the dominated convergence theorem). Moreover, with
the Riemann integral it is impossible to define a nice Banach space of integrable functions so that a
functional analytic point of view is not easily available.

The definition of the Lebesgue integral in higher dimensions does not allow to compute integrals easily
since there is no analogue of the fundamental theorem of calculus (you might consider the divergence
theorem as a generalization but this requires to calculate a complicated integral over the boundary of
sets and can only be applied if you integrate a divergence). In what follows we state two powerful tools
to calculate some integrals. As mentioned before we omit the technical proofs.

Theorem 2.30 (Fubini’s theorem). Let Ω1 ⊂ Rn,Ω2 ⊂ Rm be Lebesgue-measurable sets and f : Ω1×Ω2 ⊂
Rn+m → R be Lebesgue-measurable. If f ∈ L1(Ω1 × Ω2), then∫

Ω1×Ω2

f dλn+m =

∫
Ω1

∫
Ω2

f(x, y) dλm(y) dλn(x) =

∫
Ω2

∫
Ω1

f(x, y) dλn(x) dλm(y).

Remark 2.31. This version of Fubini’s theorem is for complete measure spaces. In particular, the
quantities appearing in the above formula are only well-defined up to null sets with respect to the
corresponding measures. The above version is build on many properties of the Lebesgue measure space
and might differ from what you find in textbooks for more abstract measure spaces. Many authors
formulate the theorem using the Borel σ-algebras.

In what follows we also use the notation dx = dλd for the d-dimensional integration with respect to
the Lebesgue measure whenever this is clear from the context.

The next theorem is similar to Fubini’s theorem but does not require the integrability of f on Ω1×Ω2

but only the non-negativity of f .

Theorem 2.32 (Tonelli’s’s theorem). Let Ω1 ⊂ Rn,Ω2 ⊂ Rm be Lebesgue-measurable sets and f :
Ω1 × Ω2 ⊂ Rn+m → R be Lebesgue-measurable. If f ≥ 0, then∫

Ω1×Ω2

f dλn+m =

∫
Ω1

∫
Ω2

f(x, y) dλm(y) dλn(x) =

∫
Ω2

∫
Ω1

f(x, y) dλn(x) dλm(y).

The integrals can be +∞.

Remark 2.33. Tonelli’s theorem on abstract measure spaces allows to derive an alternative formula for
the Lebesgue integral using just the 1-dimensional Riemann integral. It states that∫

Ω

f dµ =

∫ ∞
0

µ ({ω ∈ Ω : f(ω) > t}) dt

for every measurable function f : Ω → [0,+∞]. Some authors use the right hand side to define the
Lebesgue integral.

The next result is the so-called area formula (or change of variables). Recall that a C1-diffeomorphism
between open sets U, V ⊂ Rd is a C1-function f : U → V that is bijective and such that its inverse f−1

is also a C1-function.

Theorem 2.34 (Change of variables formula). Let U, V ⊂ Rd be open sets, T : U → V be a C1-
diffeomorphism and f : V → R be measurable. Then

f ∈ L1(V ) ⇐⇒ (f ◦ T ) · | det(DT )| ∈ L1(U)

and in this case ∫
T (U)

f(x) dx =

∫
U

f(T (x))|det(DT (x))|dx.
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Remark 2.35. There is a far-reaching generalization of the change of variables for Lipschitz functions T
that are not necessarily one-to-one. It states then when T : U → Rd is a Lipschitz mapping and f : U → R
is such that f |det(DT )| ∈ L1(U)12 then∫

U

f(x)|det(DT (x))|dx =

∫
Rd

∫
T−1(y)

f(x) dµ#(x) dy,

where µ# is the counting measure. Such formulas belong to the field of geometric measure theory.

Coming back to the classical change of variables we discuss the well-known polar coordinates in R2.

Corollary 2.36. Let f : R2 → R be measurable. Define T : (0,+∞) × (0, 2π) → R2 by T (r, ϕ) =

(r cos(ϕ), r sin(ϕ)) and f̃ : (0,+∞)× (0, 2π)→ R by

f̃(r, ϕ) = f(r cos(ϕ), r sin(ϕ)) · r.

Then f ∈ L1(R2) if and only if f̃ ∈ L1((0,+∞)× (0, 2π)). Moreover, in this case∫
R2

f(x, y) d(x, y) =

∫ 2π

0

∫ ∞
0

f(r cos(ϕ), r sin(ϕ))r dr dϕ.

Proof. We apply Theorem 2.34 with U = (0,+∞) × (0, 2π) and V := T (U) = R2 \ {(x, 0) : x ≥ 0}. By
Lemma 2.26 (ii) it follows that R2 \ V is a null set, so that

f ∈ L1(R2) ⇐⇒ f ∈ L1(V ) and

∫
R2

f d(x, y) =

∫
V

f d(x, y).

Since T is a C1-diffeomorphism from U to V (see Analysis 2) and |det(DT (r, ϕ))| = r the claim follows
from Theorem 2.34 and Fubini’s theorem. �

As a consequence of the polar coordinate transformation we can compute the limit of the error function.

Note that setting f(x, y) = e−(x2+y2) the previous corollary implies that∫
R2

e−(x2+y2) d(x, y) =

∫ 2π

0

∫ ∞
0

e−r
2

r dr dϕ =

∫ 2π

0

[− 1
2e
−r2 ]∞r=0 dϕ = π.

On the other hand, since e−(x2+y2) = e−x
2

e−y
2

the left hand side can be simplified using Tonelli’s theorem
which yields ∫

R2

e−(x2+y2) d(x, y) =

∫
R
e−x

2

∫
R
e−y

2

dy dx =

(∫
R
e−x

2

dx

)2

.

Thus

∫
R
e−x

2

dx =
√
π.

A further application concerns the volume of a disc. Setting f(x, y) = 1{x2+y2<1} we deduce that

λ2(B1(0)) =

∫
R2

f(x, y) d(x, y) =

∫ 2π

0

∫ ∞
0

1{r<1}(r)r dr dϕ =

∫ 2π

0

∫ 1

0

r dr dϕ = π.

Another important change of variables concerns spherical coordinates in R3 as defined in the following
corollary.

Corollary 2.37. Let f : R3 → R be measurable. Define T : U := (0,+∞)× (0, π)× (0, 2π)→ R3 by

T (r, θ, ϕ) = (r sin(θ) cos(ϕ), r sin(θ) sin(ϕ), r cos(θ)).

Then f ∈ L1(R3) if and only if f(T (r, θ, ϕ)) · r2 sin(θ) ∈ L1(U) and in this case∫
R3

f d(x, y, z) =

∫ 2π

0

∫ π

0

∫ ∞
0

f(T (r, θ, ϕ))r2 sin(θ) dr dθ dϕ.

12A function T : U → Rd is called Lipschitz continuous if there exists L > 0 such that |T (x)− T (y)| ≤ L|x− y| for all
x, y ∈ U . One can prove that Lipschitz maps are differentiable a.e. so that taking the determinant of DT makes sense in a
measure theoretic sense.
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Proof. The argument is similar to the proof of Corollary 2.36, so we only sketch it. First note that
V := T (U) satisfies R3 \ V = {(x, 0, z) ∈ R3 : x ≥ 0, z ∈ R}, so that it is a null set due to Lemma 2.26
(ii). Moreover, a direct calculation yields |det(DT (r, θ, ϕ))| = r2 sin(θ). From here on the proof is the
same as for the polar coordinates. We skip the details. �

As a last application of the change of variables formula we show that a C1-diffeomorphism T : U → V
maps null sets to null sets13. Let N ⊂ U be a null set. By the bijectivity of T we have that T (x) ∈ T (N)
if and only if x ∈ N , so that by the change of variables applied to 1N we obtain

λd(T (N)) =

∫
T (U)

1T (N)(x) dx =

∫
U

1T (N)(T (x))|det(DT (x))|dx︸ ︷︷ ︸
=1N (x)

=

∫
N

|det(DT (x))|dx = 0.

2.4. Convolution of integrable functions. Convolution is an important operation on integrable func-
tions, both from a ’pure mathematics’ and an applied point of view. We first give the definition.

Definition 2.38 (Convolution). Let f, g ∈ L1(Rd). Then the convolution is defined as the Lebesgue-
measurable function f ∗ g : Rd → R given for a.e. x ∈ Rd by

(f ∗ g)(x) =

∫
Rd
f(y)g(x− y) dy.

Remark 2.39. The fact that the convolution is well-defined for a.e. x ∈ Rd is part of the statement of
Fubini’s theorem. One can further show that the convolution does not depend on the representatives of f
and g except on a negligible set (we omit these proofs). We will discuss more properties of the convolution
in the lemma below.

Lemma 2.40. Let f, g, h ∈ L1(Rd). Then the convolution satisfies the following properties:

(i) f ∗ g ∈ L1(Rd) and ‖f ∗ g‖1 ≤ ‖f‖1‖g‖1;
(ii) f ∗ g = g ∗ f ;

(iii) f ∗ (g ∗ h) = (f ∗ g) ∗ h;
(iv) f ∗ (g + h) = (f ∗ g) + (f ∗ h);
(v) α(f ∗ g) = (αf) ∗ g for all α ∈ R.

If in addition g ∈ C1(Rd) has compact support14, then f ∗ g is differentiable and ∂i(f ∗ g) = f ∗ ∂ig for
all partial derivatives ∂i.

Proof. (i) As mentioned in the previous remark we do not prove the measurability of the convolution and
the fact that it is independent of the choice of representatives. Hence we focus on the integrability. By
definition we have

‖f ∗ g‖1 =

∫
Rd

∣∣∣∣∫
Rd
f(y)g(x− y) dy

∣∣∣∣ dx ≤ ∫
Rd

∫
Rd
|f(y)||g(x− y)|dy dx =

∫
Rd

∫
Rd
|f(y)||g(x− y)|dx dy,

where we used Tonelli’s theorem for non-negative functions to switch the order of integration in the
last equality. Using then the change of variables z = T (x) := x − y which satisfies T (Rd) = Rd and
det(DT (x)) = 1, Theorem 2.34 implies that∫

Rd

∫
Rd
|f(y)||g(x− y)|dxdy =

∫
Rd

∫
Rd
|f(y)||g(z)|dz dy =

∫
Rd
|f(y)|

∫
Rd
|g(z)|dz dy = ‖f‖1‖g‖1.

This concludes the proof of (i).
(ii) We apply the change of variables z = T (y) = x−y which satisfies T (Rd) = Rd and |det(DT (x))| = 1,
so that Theorem 2.34 yields

(f ∗ g)(x) =

∫
Rd
f(y)g(x− y) dy =

∫
Rd
f(x− z)g(z) dz = (g ∗ f)(x).

13This conclusion is a little cheating since this property is used to prove the change of variables formula.
14The support of a continuous function is defined as the closure of the set {g 6= 0}.
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(iii) The calculations look complicated, but essentially it suffices to apply Fubini’s theorem. Indeed, we
have

f ∗ (g ∗ h)(x) =

∫
Rd
f(y)

∫
Rd
g(z)h(x− y − z) dz︸ ︷︷ ︸

=(g∗h)(x−y)

dy =

∫
Rd

∫
Rd
f(y)g(z)h(x− y − z) dy dz

z+y=:ω
=

∫
Rd

∫
Rd
f(ω − z)g(z)h(x− ω) dω dz =

∫
Rd

∫
Rd
f(ω − z)g(z) dz︸ ︷︷ ︸

=(f∗g)(ω)

h(x− ω) dω

= (f ∗ g) ∗ h(x)

(iv) and (v) are a consequence of the linearity of the Lebesgue integral.

In order to prove the last statement, fix x0 ∈ Rd. Note that a C1-function with compact support has
a uniformly bounded derivative. We now apply Corollary 2.20 about the differentiability of parameter-
dependent integrals. Define ` : Rd×Rd → R by `(x, y) = f(y)g(x−y). Then by assumption ` is integrable
in y for every x ∈ Rd15 and differentiable with respect to x for all y ∈ Rd. Moreover, the partial derivative
is given by

∂xi`(x, y) = f(y)∂ig(x− y).

We need to bound this derivative uniformly in x ∈ Rd. Clearly |f(y)∂ig(x− y)| ≤ |f(y)|‖Dg‖∞ and the
right hand side is integrable since f is integrable by assumption. Thus the claim follows from Corollary
2.20. �

The convolution can also be defined on other spaces than L1(Rd). For instance, using tools from
functional analysis one can define the convolution of certain measures. In particular, it turns out that
the Dirac measure δ0 satisfies f ∗ δ0 = f for any reasonably nice function such that the convolution with
measures is well-defined (for instance, f ∈ Cc(Rd)). One powerful aspect of convolutions becomes evident
when one weakens the notion of derivative (so-called distributional derivatives). Then one can try to solve
PDEs by finding the so-called fundamental solution. Consider for instance the Poisson equation −∆u = f
on Rd. Solving the PDE −∆u0 = δ0 (the solution is called the fundamental solution) then suffices to
treat the inhomogeneous case by setting uf = f ∗ u0. Indeed, a formal calculation (which can be made
rigorous in the framework of distributions) yields that

−∆uf = −∆(f ∗ u0) = f ∗ (−∆u0) = f ∗ δ0 = f.

In this subsection we only treat the case of Lp spaces with exponents different from 1.

Proposition 2.41 (Young’s convolution inequality). Let f ∈ Lp(Rd) and g ∈ Lq(Rd). Let 1 ≤ p, q ≤
r ≤ +∞ satisfy 1/p+ 1/q = 1 + 1/r. Then f ∗ g ∈ Lr(Rd) and

‖f ∗ g‖r ≤ ‖f‖p‖g‖q.

In particular, when q = 1 then r = p and ‖f ∗ g‖p ≤ ‖f‖p‖g‖1.

Proof. See exercise H 9.4. �

Next we take a look at an example to see the effect of the convolution. Let f ∈ L1(R) ∩ C(R) with
primitive F ∈ C1(R) and set g = 1[−1,0]. Then by definition

(f ∗ g)(x) =

∫
R
f(y)1[−1,0](x− y)︸ ︷︷ ︸

=1[x,x+1](y)

dy =

∫ x+1

x

f(y) dy = F (x+ 1)− F (x).

15Fubini’s theorem only yields the integrability for a.e. x ∈ Rd. However, since g is uniformly bounded it follows that
the integral is finite for all x ∈ Rd.
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Hence in this case the convolution filters the behavior of the function f locally around x. Considering
instead the function gε = 1

ε1[−ε,0] the same calculation shows that

(f ∗ gε)(x) =
F (x+ ε)− F (x)

ε

ε→0→ F ′(x) = f(x).

Thus gε is close to an identity for the convolution (and indeed, one can show that gε converges in a
suitable sense to a Dirac measure). Now assume for the moment that the function gε would be regular.
Then the convolution (f ∗ gε) has at least the same regularity as gε by Lemma 2.40, so that we could
approximate f by more regular functions.

In order to find a smoother version of gε one can use the following method (also valid in higher
dimensions): define g, gε : Rd → R by

g(x) =

c e−
1

1−|x|2 if x ∈ B1(0),

0 otherwise,
, gε(x) = ε−dg(xε ), (6)

where c > 0 is a constant chosen such that
∫
Rd g dx = 1. Then one can show that g, gε ∈ C∞c (Rd).

The next theorem shows that the convolution with gε with Lp-functions (with p < +∞) provides
indeed a smooth approximation. We just sketch the proof which relies on the non-trivial fact that every
Lp-function can be approximated in the Lp-norm by Cc(Rd)-functions.16

Theorem 2.42 (Smooth functions are dense in Lp for p < +∞). Let Ω ⊂ Rd be open and 1 ≤ p < +∞.

Let gε ∈ C∞c (Rd) be defined as in (6). For f ∈ Lp(Ω) define its extension to Rd by f̃(x) = 0 for x ∈ Rd\Ω.

Then the sequence (f̃ ∗ gε)|Ω belongs to Lp(Ω) ∩ C∞(Ω) and

lim
ε→0
‖(f̃ ∗ gε)|Ω − f‖Lp(Ω) = 0.

Proof. Note that f̃ ∈ Lp(Rd) and by Lemma 2.40 and Proposition 2.41 we know that f̃ ∗ gε ∈ Lp(Rd) ∩
C∞(Rd), so that (f̃ ∗ gε)|Ω ∈ Lp(Ω) ∩ C∞(Ω). As announced we use without proof that for any δ > 0

there exists a function fδ ∈ Cc(Rd) such that ‖f̃−fδ‖p < δ (this is false for p = +∞). Fix such a function
fδ. Next note that by the change of variables y = x/ε we have dx = εddy. Hence

‖gε‖1 =

∫
Rd
|gε(x)|dx =

∫
Rd
ε−dg(xε ) dx =

∫
Rd
g(y) dy = 1.

Hence by the triangle inequality and Proposition 2.41 we have

‖(f̃ ∗ gε)|Ω − f‖Lp(Ω) ≤ ‖(f̃ ∗ gε)− f̃‖p ≤ ‖(f̃ − fδ) ∗ gε‖p + ‖fδ ∗ gε − fδ‖p + ‖fδ − f̃‖p
≤ ‖f̃ − fδ‖p︸ ︷︷ ︸

≤δ

‖gε‖1︸ ︷︷ ︸
=1

+‖fδ ∗ gε − fδ‖p + δ ≤ 2δ + ‖fδ ∗ gε − fδ‖p.

We show that lim
ε→0
‖fδ ∗ gε − fδ‖p. Then the claim follows from the arbitrariness of δ > 0.

Since
∫
Rd gε dx = 1 we have

‖fδ ∗ gε − fδ‖pp =

∫
Rd

∣∣∣∣∫
Rd

(fδ(y)− fδ(x))gε(x− y) dy

∣∣∣∣p dx ≤
∫
Rd

(∫
Rd
|fδ(y)− fδ(x)|gε(x− y) dy

)p
dx

16This fact relies in particular on a regularity property of the Lebesgue-measure that requires to treat its construction
in detail.
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Next note that gε(x− y) = 0 for y /∈ Bε(x). Hence the inner integral can be restricted to Bε(x), so that∫
Rd

(∫
Rd
|fδ(y)− fδ(x)|gε(x− y) dy

)p
dx =

∫
Rd

(∫
Bε(x)

|fδ(y)− fδ(x)|gε(x− y) dy

)p
dx

≤
∫
Rd

sup
y∈Bε(x)

|fδ(y)− fδ(x)|p
(∫

Bε(x)

gε(x− y) dy︸ ︷︷ ︸
=1

)p
dx

≤
∫
Rd

sup
y∈Bε(x)

|fδ(y)− fδ(x)|p dx.

Since fδ has compact support (denoted by K), the last integral can be restricted to the bounded set
K+Bε(0) ⊂ K+B1(0) for ε < 1. Moreover, being f uniformly continuous (since its support is compact),
it follows that

lim
ε→0

sup
x∈Rd

sup
y∈Bε(x)

|fδ(y)− fδ(x)|p = 0.

Hence ∫
Rd

sup
y∈Bε(x)

|fδ(y)− fδ(x)|p dx ≤ sup
x∈Rd

sup
y∈Bε(x)

|fδ(y)− fδ(x)|p λd(K +B1(0))
ε→0→ 0.

This concludes the proof. �

3. The Fourier transform

In this third chapter we discuss the so-called Fourier transformation. While Fourier series represent
periodic functions by a superposition of sin and cos with variable frequencies the Fourier transformation
treats non-periodic functions. In general, a countable superposition of elementary waves is no longer
sufficient, but we need a continuum of superpositions. The mathematically rigorous definition is given
below. In what follows the Lebesgue integral of complex-valued functions is understood by integrating
separately the real-and imaginary part.

Definition 3.1. Let f ∈ L1(Rd). The Fourier-transform of f is the function F [f ] : Rd → C given by

F [f ](k) =

∫
Rd
f(x)e−ik·x dx,

where k · x denotes the scalar-product between the vectors x, k ∈ Rd.

Remark 3.2. The definition of the Fourier transform varies in the literature. Sometimes you find the
factor 2π in the exponential or also a normalizing factor in front of the integral. In any case the Fourier
transform is well-defined for f ∈ L1(Rd) since the exponential has modulus 1.

The Fourier transform is often interpreted as a function defined on frequencies and indeed this view-
point is exploited in the field of signal processing. We will also see that some PDEs can be solved quite
easily after Fourier transformation since differential operators are transformed to polynomial products.
However, in order to get back to the relevant physical space one needs to define the inverse Fourier trans-
formation. Before we come to that topic we collect some elementary properties of the Fourier transform.

Lemma 3.3. Let f ∈ L1(Rd), h ∈ Rd and λ > 0. Then

(i) f 7→ F [f ] is linear in f ;
(ii) F [f ] ∈ C(Rd) and ‖F [f ]‖∞ ≤ ‖f‖1;

(iii) g(x) := f(x− h) =⇒ F [g](k) = e−ik·hF [f ](k);
(iv) g(x) := eih·xf(x) =⇒ F [g](k) = F [f ](k − h);
(v) g(x) := f(xλ ) =⇒ F [g](k) = λdF [f ](λk).
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Proof. (i) follows from the linearity of the Lebesgue integral.
(ii) Continuity of the Fourier transformation was proven in H 8.2 b). The bound on the L∞-norm follows
by taking the supremum over k ∈ Rd in the estimate

|F [f ](k)| ≤
∫
Rd
|f(x)| |e−ik·x|︸ ︷︷ ︸

=1

dx = ‖f‖1.

(iii) By definition and the change of variables T (x) = x− h we have

F [g](k) =

∫
Rd
f(x−h)e−ik·x dx

y:=x−h
=

∫
Rd
f(y) e−ik·(y+h)︸ ︷︷ ︸

=e−ik·ye−ik·h

dy = e−ik·h
∫
Rd
f(y)e−ik·y dy = e−ik·hF [f ](k).

(iv) By definition we find that

F [g](k) =

∫
Rd
f(x)eih·xe−ik·x dx =

∫
Rd
f(x)e−ik·(k−h) dx = F [f ](k − h).

(v) We apply the change of variables y = T (x) = x
λ which yields dx = λddy, so that

F [g](k) =

∫
Rd
f(xλ )e−ik·x dx = λd

∫
Rd
f(y)e−ik·λy dy = λdF [f ](λk).

�

Next we treat some illustrative examples of the Fourier transform. You will prove the corresponding
statements in the exercises.

Example 3.4. a) Let A ∈ Rd×d be symmetric and positive definite. Then fA(x) = e−
1
2x

TAx belongs to
L1(Rd) and

F [fA](k) =

√
(2π)d√

det(A)
e−

1
2k

TA−1k.

b) For R > 0 let fR : R→ R be defined by fR = 1[−R,R] ∈ L1(R). Then

F [fR](k) =
2 sin(Rk)

k
.

In particular, F [fR] /∈ L1(R) (cf. H 9.1), so that in general the Fourier transform of an L1-function is not
necessarily integrable.

The fact that the Fourier transform does not belong to L1(Rd) is the main difficulty to define the
reverse Fourier transform. Before we discuss the inverse transformation we investigate the connection
between differentiability and the decay at infinity of the Fourier transform, which also shows later why
we are interested in an inverse operation.

Proposition 3.5. Let f ∈ L1(Rd) ∩ Cm(Rd) for some m ∈ N. Assume that ∂αf ∈ L1(Rd) for all
multi-indices α ∈ Nd0 with |α| ≤ m. Then

F [∂αf ](k) = i|α|kαF [f ](k),

where |α| :=
∑d
i=1 αi, k

α :=
∏d
i=1 k

αi
i and ∂α := ∂|α|

(∂x1)α1 ...(∂xd)αd .

Proof. We first show the statement when d = m = 1. By dominated convergence and integration by parts
we have

F [f ′](k) =

∫
R
f ′(x)e−ikx dx = lim

t→+∞

∫ t

−t
f ′(x)e−ikx dx

= lim
t→+∞

(
f(t)e−ikt − f(−t)eikt + ik

∫ t

−t
f(x)e−ikx dx

)
.
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Again by dominated convergence it holds that

lim
t→+∞

ik

∫ t

−t
f(x)e−ikx dx = ikF [f ](k).

Hence we deduce that

F [f ′](k) = lim
t→+∞

(
f(t)e−ikt − f(−t)eikt

)
+ ikF [f ](k).

It suffices to prove that the limit equals 0. Since f ′ ∈ L1(R) it follows one more time from dominated
convergence that there exists the limits

f(0) + lim
t→±∞

∫ t

0

f ′(x) dx = lim
t→±∞

f(t).

Since f ∈ L1(R) the only possibility is that these limits17 are zero. Since |e±ikt| = 1 we conclude that

lim
t→+∞

(
f(t)e−ikt − f(−t)eikt

)
= 0.

Hence F [f ′](k) = ikF [f ](k) as claimed.
The case d = 1 and m > 1 follows by iterating the above proof which yields an additional prefactor ik

in every step.
Next we treat the case d > 1 and m = 1. In this case the only admissible differential operators are the

partial derivatives ∂j . Then we have by Fubini’s theorem and the same reasoning as in the one-dimensional
case that

F [∂jf ](k) =

∫
Rd−1

∫
R
∂jf(x)e−ik·x dxj d(x1, . . . , xj−1, xj+1, . . . , xd)

=

∫
Rd−1

∫
R
ikjf(x)e−ik·x dxj d(x1 . . . , xj−1, xj+1, . . . , xd) = ikj

∫
Rd
f(x)e−ik·x dx

= i|α|kαF [f ](k),

where we used that α = ej .
The general case m > 1 follows again by iterating the above argument. �

Remark 3.6. One can prove that for f ∈ L1(Rd) the Fourier transform vanishes at infinity, i.e.,

lim
|k|→+∞

F [f ](k) = 0.

The previous proposition yields a more quantitative decay depending on the smoothness of f . In partic-
ular, combining Lemma 3.3 (ii) and Proposition 3.5 we deduce that any f ∈ L1(Rd) ∩ Cm(Rd) with all
derivatives also in L1(Rd) satisfies

|F [f ](k)| ≤ C ‖D
mf‖1
‖k‖m

.

The next result shows that when f decays with a certain rate at infinity then its Fourier transform
possesses derivatives up to a certain order.

Proposition 3.7. Let f ∈ L1(Rd) and m ∈ N. Assume that x 7→ gα(x) = xαf(x) ∈ L1(Rd) for all
multi-indices α ∈ Nd0 with |α| ≤ m. Then F [f ] ∈ Cm(Rd) and ∂αF [f ] = (−i)|α|F [gα].

Proof. We apply Corollary 2.20 about the differentiability of parameter-dependent integrals. Note that
the partial derivative with respect to kj of the integrand is given by

∂kj
(
f(x)e−ik·x

)
= −ixjf(x)e−ik·x.

17In general integrability does not imply that the limits at ±∞ are zero since they might not even exist, but if the limits
exist then they have to be zero.
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Since |e−ik·x| = 1 we have that |∂kj (f(x)e−ik·x)| ≤ |xj ||f(x)| which is independent of k and integrable by
assumption. Hence Corollary 2.20 yields that

∂kjF [f ](k) = −i
∫
Rd
xjf(x)e−ik·x dx = −iF [gej ](k).

Due to Lemma 3.3 (ii) the right hand side is a continuous function. Thus F [f ] ∈ C1(Rd) and the derivative
has the claimed structure. For higher order derivatives we repeat the above reasoning to conclude the
proof. �

In order to apply the relation between Fourier transform and derivatives we consider a linear partial
differential equation with constant coefficients, i.e., of the form∑

α∈Nd0
|α|≤m

cα∂
αu(x) = f(x) on Rd.

Taking the Fourier transform of the equation then leads to the algebraic equation( ∑
α∈Nd0
|α|≤m

cαi
|α|kα

)
F [u](k) = F [f ](k).

The polynomial
∑
α cαi

|α|kα is called the symbol of the differential operator. If it is not degenerate (this
depends on the structure of the differential operator) then we can solve for F [u] by dividing the above
equality by the symbol. In order to obtain the solution u we have to invert the Fourier transformation. A
similar procedure can be used for time-dependent PDEs for which the spatial18 Fourier transformation
yields an ODE instead of a purely algebraic equation. In both cases we need to undo the Fourier transform.
Hence we next discuss how to invert the Fourier transformation.

Definition 3.8. Let f ∈ L1(Rd). Then the inverse Fourier transform F−1[f ] : Rd → C of f is defined by

F−1[f ](x) =
1

(2π)d
F [f ](−x) =

1

(2π)d

∫
Rd
f(k)eik·x dk.

It is at the moment unclear that F−1 is the inverse operator of the Fourier transform. And indeed,
there are some obstructions. For instance, to define F−1[F [f ]] we need that F [f ] ∈ L1(Rd), which we
have seen is not true in general. Next, we know that F−1[F [f ]] is a bounded, continuous function. This
cannot be true for every function f ∈ L1(Rd). The Fourier inversion theorem can be formulated in several
ways. There are versions which make assumptions on F [f ] (integrability) or which define the Fourier
transformation on smaller spaces (which then ensure that the additional assumption is automatically
satisfied). We present both versions.

Before we state the inversion theorems we prove an auxiliary lemma.

Lemma 3.9. Let f ∈ L1(Rd) be such that F [f ] ∈ L1(Rd). For L ∈ N define the function δL : Rd → R by

δL(x) = Ld√
(2π)d

e−
1
2L

2|‖x‖2 . Then for all x ∈ Rd we have

lim
L→+∞

(f ∗ δL)(x) = F−1[F [f ]](x).

Proof. By Example 3.4 it holds that F [δ1](x) =
√

(2π)dδ1(x), so that

δL(x) = δL(−x) = Ldδ1(−Lx) =
Ld√
(2π)d

F [δ1](−Lx) =
Ld

(2π)d

∫
Rd
e−

1
2‖y‖

2

eiy·Lx dy.

Using the change of variables k = Ly, we obtain

δL(x) =
1

(2π)d

∫
Rd
e−
‖k‖2

2L2 eix·k dk.

18One could also try a full Fourier transform but most time-dependent equations are such that the full symbol of the
differential operator is degenerate.
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Hence by Fubini’s theorem we have

(f ∗ δL)(x) =

∫
Rd
f(y)δL(x− y) dy =

1

(2π)d

∫
Rd
f(y)

∫
Rd
e−
‖k‖2

2L2 ei(x−y)·k dk

=
1

(2π)d

∫
Rd

∫
Rd
f(y)e−ik·y dy︸ ︷︷ ︸
=F [f ](k)

e−
‖k‖2

2L2 eix·k dk =
1

(2π)d

∫
Rd
F [f ](k) e−

‖k‖2

2L2 eix·k︸ ︷︷ ︸
=:gL(k)

dk.

Note that gL(k) → F [f ](k)eix·k as L → +∞. Moreover, |gL(k)| ≤ |F [f ](k)| and the last function is
integrable by assumption. Hence by Lebesgue’s dominated convergence theorem we deduce that

(f ∗ δL)(x)→ 1

(2π)d

∫
Rd
F [f ](k)eix·k dk = F−1[F [f ]](x).

�

In order to prove a version of the Fourier inversion theorem we need to show that (f ∗δL)(x)→ f(x) as
L→ +∞. To motivate why this can be true, note that δL decays exponentially for x� 1/L and blows up
like Ld if ‖x‖ ≤ 1/L. Hence the behavior is similar to the function gε constructed to prove Theorem 2.42
(except that its support is not compact). However, in Theorem 2.42 we proved convergence in Lp but not
pointwise. Indeed, we cannot expect pointwise convergence for every x ∈ Rd except when the function f
is continuous. In order to state the result we use another notation from Lebesgue integration.

Definition 3.10. Let f : Rd → R be Lebesgue-integrable on every compact set K ⊂ Rd. We say that
x0 ∈ Rd is a Lebesgue point of f if

lim
r→0

1

rd

∫
Br(x0)

|f(y)− f(x0)|dy = 0.

Note that when f is continuous in x0 then x0 is a Lebesgue point of f . In the general case we have
the following powerful result that we do not prove in this course.

Theorem 3.11 (Lebesgue’s differentiation theorem). Let f : Rd → R be Lebesgue-integrable on every
compact subset K ⊂ Rd. Then a.e. x0 ∈ Rd is a Lebesgue point of f .

With the help of Lebesgue’s differentiation theorem we can state and prove the first version of the
Fourier inversion theorem.

Theorem 3.12 (Fourier inversion theorem; L1-version). Let f ∈ L1(Rd) be such that F [f ] ∈ L1(Rd).
Then F−1[F [f ]](x) = f(x) for every Lebesgue point of f . In particular, F−1[F [f ]] = f a.e. and thus as
elements in L1(Rd). If f is in addition continuous, then F−1[F [f ]](x) = f(x) for all x ∈ Rd.

Proof. By Lemma 3.9 it suffices to prove that lim
L→+∞

(f ∗ δL)(x0) = f(x0) for every Lebesgue point x0 of

f , where δL ∈ L1(Rd) ∩ C∞(Rd) is defined in Lemma 3.9. Thus fix a Lebesgue point x0 ∈ Rd of f . Due
to Young’s convolution inequality also f(x0) ∗ δL is well-defined and

(f(x0) ∗ δL)(x0) = f(x0)

∫
Rd
δL(x0 − y) dy = f(x0)

∫
Rd
δL(y) dy = f(x0)

∫
Rd
δ1(y) dy︸ ︷︷ ︸
=1

= f(x0).

Thus it suffices to prove that lim
L→+∞

((f − f(x0)) ∗ δL)(x0) = 0. First we show that asymptotically we can

restrict the convolution integral to a very small set. Indeed, for any r0 > 0 we have

((f − f(x0)) ∗ δL(x0) =

∫
Br0 (0)

(f(x0 − y)− f(x0))δL(y) dy +

∫
‖y‖≥r0

(f(x0 − y)− f(x0))δL(y) dy.

As we will see the second integral vanishes when L→ +∞. Indeed, for any y ∈ Rd with ‖y‖ ≥ r0 we have

|f(x0−y)−f(x0)|δL(y)| ≤ |f(x0−y)−f(x0)|Lde−
1
4L

2r20︸ ︷︷ ︸
=:aL

e−
1
4‖y‖

2

≤
(

sup
L∈N

aL

)
|f(x0 − y)− f(x0)|e−

1
4‖y‖

2︸ ︷︷ ︸
∈L1(Rd)

.
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Since aL → 0 when L → +∞ we obtain that (f(x0 − y) − f(x0))δL(y) converges to 0 pointwise on
Rd \Br0(0). Moreover, since aL is in particular bounded, we can apply Lebesgue’s dominated convergence
theorem to deduce that for any r0 > 0

lim
L→+∞

∫
‖y‖≥r0

(f(x0 − y)− f(x0))δL(y) dy = 0.

Hence it suffices to prove that

lim
r0→0

lim
L→+∞

∫
Br0 (0)

(f(x0 − y)− f(x0))δL(y) dy = 0.

To this end, let us assume that r0 = 2−k for some k ∈ N and divide the ball B2−k(0) in countably many

annuli setting An = B2n+1(0) \B2n(0) for n ∈ Z, so that

B2−k(0) = {0} ∪
⋃

n<−k

An.

Since ∂B2−k(0) is a null set, we have∣∣∣∣∣
∫
Br0 (0)

(f(x0 − y)− f(x0))δL(y) dy

∣∣∣∣∣ ≤
∫
Br0 (0)

|f(x0 − y)− f(x0)|δL(y) dy

≤
∑
n<−k

∫
An

|f(x0 − y)− f(x0)|δL(y) dy.

Note that on each annulus An we have that δL(y) ≤ Lde−
1
2L

24n , so that∫
An

|f(x0 − y)− f(x0)|δL(y) dy ≤ Lde−
1
2L

24n
∫
B2n+1(0)

|f(x0 − y)− f(x0)|dy

≤ (2n+1L)de−
1
8 (L2n+1)2 1

(2n+1)d

∫
B2n+1 (0)

|f(x0 − y)− f(x0)|dy.

Inserting this estimate in the previous one and using that 2n+1 ≤ r0 for n < −k, we obtain by a change
of variables that that∣∣∣∣∣
∫
Br0 (0)

(f(x0 − y)− f(x0))δL(y) dy

∣∣∣∣∣ ≤
( ∑
n<−k

(2n+1L)de−
1
8 (L2n+1)2

)
sup
r≤r0

1

rd

∫
Br(x0)

|f(y)− f(x0)|dy.

The term outside of the brackets is independent of L and since x0 is a Lebesgue point of f it follows that

lim
r0→0

sup
r≤r0

1

rd

∫
Br(x0)

|f(y)− f(x0)|dy = 0.

Therefore it suffices to prove that the term in brackets remains bounded when L→ +∞ and r0 → 0 (the
latter is equivalent to k → +∞). We achieve this by comparison to an integral. Note that

λd(LAn+1) = Ldλd(An+1)) = Ld (λd(B2n+2(0))− λd(B2n+1(0)))

= Ldλd(B1(0))
(
(2n+2)d − (2n+1)d

)
= Ldλd(B1(0))(2d − 1)(2n+1)d ≥ λd(B1(0))(2n+1L)d

and for x ∈ LAn+1 it holds that ‖x‖ ≤ L2n+2, so that

e−
1
32‖x‖

2

≥ e−
(L2n+1)2

8 .

Thus we can write∑
k<−n

(2n+1L)de−
1
8 (L2n+1)2 ≤ 1

λd(B1(0))

∑
n<−k

∫
LAn+1

e−
1
32‖x‖

2

dx ≤ 1

λd(B1(0))

∫
Rd
e−

1
32‖x‖

2

dx < +∞

independently of L and r0. This proves the claim �
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After proving the first version of the Fourier inversion theorem we give a sufficient condition for the
assumptions to be satisfied.

Corollary 3.13. Let f ∈ L1(Rd) ∩ Cm(Rd) with m ≥ d + 1 and such that ∂αf ∈ L1(Rd) for all multi-
indices α ∈ Nd0 with |α| ≤ m. Then F [f ] ∈ L1(Rd) and F−1[F [f ]](x) = f(x) for all x ∈ Rd.

Proof. Combine exercise H 9.3 with Theorem 3.12. �

Note that under those assumptions the Fourier transform is not necessarily m-times differentiable
itself. Later we will introduce a space that is mapped by the Fourier transform onto itself.

But first we present an application (further examples will be treated in the exercises). Consider the
heat equation on Rd. More precisely, we look for solutions of the PDE{

∂tu(t, x) = D∆u(t, x) ∀(t, x) ∈ (0,+∞)× Rd,
u(0, x) = u0(x) ∀x ∈ Rd.

Here D > 0 is the so-called diffusion coefficient and the Laplace operator is the second order differential

operator given by ∆ =
∑d
j=1 ∂

2
j . We assume that the initial condition satisfies u0 ∈ L1(Rd). Taking the

spatial Fourier transform of the heat equation we obtain the ODE19{
∂tF [u(t, ·)](k) = −D‖k‖2F [u(t, ·)](k) ∀(t, k) ∈ (0,+∞)× Rd,
F [u(0, ·)](k) = F [u0](k) ∀x ∈ Rd.

Here we see k as a parameter. The solution is given by

F [u(t, ·)](k) = F [u0](k)e−tD‖k‖
2

= F [u0](k)F [G(t, ·)](k),

where, according to Example 3.4, we have

G(t, x) =
1√

(4πtD)d
e−
‖x‖2
4tD .

From exercise H 9.2 we know that F [f ∗ g] = F [f ]F [g], so we deduce that

F [u](t, k) = F [u0 ∗G(t, ·)](k).

In order to apply the inverse Fourier transform, we need to check that F [u0 ∗ G(t, ·)] ∈ L1(Rd). The
assumption that u0 ∈ L1(Rd) ensures that F [u0] ∈ L∞(Rd) by Lemma 3.3. Since F [f ∗g] = F [f ]F [g] and
F [G(t, ·)] ∈ L1(Rd), Hölder’s inequality implies the claim. Hence we can apply Theorem 3.12 to deduce
that

u(t, x) = (u0 ∗G(t, ·))(x) =
1√

(4πtD)d

∫
Rd
u0(y)e−

‖x−y‖2
4tD dy,

which provides a semi-explicit formula for the solution.

3.1. The Fourier transform in the Schwartz space. In this subsection we introduce a space that
is invariant under the Fourier transform. It is called the Schwartz space and the elements are sometimes
called Schwartz functions or functions in the Schwartz class. Those are smooth functions that decay
rapidly at infinity as classified in the definition below.

Definition 3.14. The Schwartz space S (Rd) is defined as

S (Rd) = {f ∈ C∞(Rd;C) : ∀α, β ∈ Nd0 : sup
x∈Rd

|xα∂βf(x)| < +∞}.

Note that the set of compactly supported smooth functions C∞c (Rd) is contained in the Schwartz space.

Another example is given by the function f(x) = e−x
TAx, where A ∈ Rd×d is symmetric and positive

definite. In the next lemma we collect some elementary properties of S (Rd) whose proof is left to the
interested reader.

19Here we assume that the time derivative commutes with the Fourier transform. This cannot be justified without any
a priori assumptions on the solution. However, although being formal at this point, at the very end we obtain a solution for
which this procedure can be justified a posteriori.
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Lemma 3.15. Let f, g ∈ S (Rd), c ∈ C and α ∈ Nd
0 . Then the following functions belong also to S (Rd):

(i) x 7→ f(x);
(ii) x 7→ f(x)g(x);

(iii) x 7→ cf(x) + g(x);
(iv) x 7→ xαf(x);
(v) x 7→ ∂αf(x).

As shown in the lemma below a Schwartz function belongs to Lp(Rd) for every p ∈ [1,+∞].

Lemma 3.16. It holds that S (Rd) ⊂ Lp(Rd) for any p ∈ [1,+∞].

Proof. First note that the case p = +∞ is covered by the definition for the multi-indices α = β = 0. Hence
assume that p ∈ [1,+∞). As proven in the solution of H 9.3 the function gm(x) = 1{‖x‖≥1}(x)‖x‖−m is

integrable on Rd as soon as m > d. Due to Hölder’s inequality we have for any f ∈ S (Rd) that

‖f‖p = ‖f1B1(0) + f1{‖x‖≥1}‖p ≤ ‖f1B1(0)‖p + ‖f1{‖x‖≥1}‖p

≤ ‖f‖∞‖1B1(0)‖p +

(
sup
x∈Rd

‖x‖m|f(x)|
)

︸ ︷︷ ︸
=:Cf,m

‖gm‖p = ‖f‖∞λd(B1(0))
1
p + Cf,m‖gm‖p.

In order to conclude the proof, it suffices to show that gm ∈ Lp(Rd). To this end, note that |gm|p = gpm
and pm ≥ m > d. This proves the claim. �

The next result is about the density of Schwartz functions in Lp(Rd). As they are smooth, we have to
exclude the case p = +∞.

Proposition 3.17. Let 1 ≤ p < +∞. Then for every f ∈ Lp(Rd) there exists a sequence (fn)n∈N ⊂
S (Rd) such that ‖f − fn‖p → 0 as n→ +∞.

Proof. Arguing separately for the real- and imaginary part, we may assume that f is real-valued. In the
exercises it is shown that we can even take fn ∈ C∞c (Rd). This yields the claim. �

The previous proposition will be useful to define the Fourier transform on the Hilbert space L2(Rd)
which is the setting most relevant for applied mathematics. Before we can switch to this setting we need
to understand the Fourier transform on S (Rd).

Theorem 3.18 (Fourier inversion theorem; Schwartz space version). For every f ∈ S (Rd) it holds that
F [f ] ∈ S (Rd). Moreover, the Fourier transform F : S (Rd)→ S (Rd) is bijective.

Proof. As S (Rd) ⊂ L1(Rd) the Fourier transform is well-defined on S (Rd). Moreover, by Lemma 3.15
it holds that x 7→ xαf(x) ∈ S (Rd) ⊂ L1(Rd). Thus Proposition 3.7 yields that F [f ] ∈ C∞(Rd;C).
Moreover, for any two multi-indices α, β ∈ Nd0 we have the formula

kα∂βF [f ](k) = kα(−i)|β|F [x 7→ xβf(x)](k) = (−i)|α|+|β|F [x 7→ ∂α
(
xβf(x)

)
](k).

Since x 7→ ∂α
(
xβf(x)

)
∈ S (Rd) ⊂ L1(Rd) by Lemma 3.15, it follows by Lemma 3.3 that its Fourier

transform belongs to L∞(Rd). Hence it is bounded, which shows that also kα∂βF [f ](k) is bounded, so
that F [f ] ∈ S (Rd). In order to prove that F is bijective, assume that F [f ] = F [g] for some f, g ∈ S (Rd).
Since F [f ] ∈ S (Rd) ⊂ L1(Rd) we can take the inverse Fourier transform and deduce from Theorem 3.12
that f = g since both functions are continuous. Next let h ∈ S (Rd) be given. Set f = F−1[h]. Since
the inverse Fourier transform is given by (2π)−dF [·](−x), it follows again that f ∈ S (Rd). Moreover, by
Theorem 3.12 we have20

20Note that we cannot use F ◦F−1 = Id since the Fourier inversion theorem in L1 only showed that F−1 ◦F = Id (and
this only under certain assumptions). In infinite dimensions this does not automatically imply the first statement.
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F [f ](k) = F [F−1[h]](k) =
1

(2π)d

∫
Rd
e−ik·x

∫
Rd
eiω·xh(ω) dω dx

T (x)=−x
=

1

(2π)d

∫
Rd
eik·y

∫
Rd
e−iω·yh(ω) dω dy = F−1[F [h]](k) = h(k).

�

Next we discuss a geometric property of the Fourier transform with regard to the L2-scalar product.

Proposition 3.19 (Plancherel theorem in S (Rd)). Let f, g ∈ S (Rd). Setting 〈f, g〉 =
∫
Rd f(x)g(x) dx,

it holds that

(2π)−d〈F [f ],F [g]〉 = 〈f, g〉

Proof. By definition we have

〈F [f ],F [g]〉 =

∫
Rd
F [f ](k)F [g](k) dk =

∫
Rd

∫
Rd
f(x)eik·x dxF [g](k) dk.

Note that the integrand belongs to L1(R2d) since |eik·x| = 1 and f,F [g] ∈ S (Rd) ⊂ L1(Rd).21 Hence we
can apply Fubini’s theorem to deduce that

(2π)−d〈F [f ],F [g]〉 = (2π)−d
∫
Rd

∫
Rd
eik·xF [g](k) dkf(x) dx =

∫
Rd
g(x)f(x) dx,

where in the last equality we applied Theorem 3.18. The last term equals 〈f, g〉 by definition. �

Note that the prefactor in the above result can be avoided if we put the prefactor
√

(2π)−d in front
of the Fourier transform and its inverse (for the latter instead of the prefactor (2π)−d). But then one
gains a prefactor for instance in the identity F [f ∗ g] = F [f ]F [g]. Every convention has its advantages
and disadvantages.

3.2. The Fourier transform on L2(Rd). The Fourier transform on S (Rd) is not always suitable for
applications since it imposes strong assumptions on the functions involved. In particular, any disconti-
nuities are ruled out by the smoothness. Hence in what follows we extend the Fourier transform to an
isometry on the space of complex-valued square-integrable functions. This is achieved via an abstract
argument since the classical definition of the Fourier transform is not well-defined for f ∈ L2(Rd) (the
exponential eik·x belongs to L∞(Rd) but it does not decay at infinity).

Theorem 3.20. The Fourier transform F can be extended in a unique way to a continuous, linear and
bijective operator F : L2(Rd)→ L2(Rd) such that

(2π)−d〈F [f ],F [g]〉 = 〈f, g〉 ∀f, g ∈ L2(Rd).

Proof. The argument is part of a more general theory about the extension of linear, continuous operators.
Let f ∈ L2(Rd). Due to Proposition 3.17 we find a sequence (fn)n∈N ⊂ S (Rd) such that ‖fn − f‖2 → 0
as n→ +∞. In particular, (fn)n∈N is a Cauchy-sequence in L2(Rd), which means that

lim
n→+∞

sup
m≥n
‖fn − fm‖2 = 0.

By Plancherel’s theorem we conclude that also (F [fn])n∈N is a Cauchy-sequence in L2(Rd), since

lim
n→+∞

sup
m≥n
‖F [fn]−F [fm]‖2 = (2π)d lim

n→+∞
sup
m≥n
‖fn − fm‖2 = 0.

Since L2(Rd) is a Banach space, there exists F [f ] := lim
n→+∞

F [fn] ∈ L2(Rd). Note that this is the only

choice for a continuous extension, which proves uniqueness. Let us show next that this extension does not

21To prove this conclusion in detail one can apply Tonelli’s theorem for the modulus of the integrand.
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depend on the choice of the approximating sequence (fn)n∈N. Let (f̃n)n∈N ⊂ S (Rd) be another sequence

such that ‖f̃n − f‖ → 0. Then again due to Plancherel’s theorem we have

‖F [f̃n]−F [fn]‖2 = (2π)d‖f̃n − fn‖2 ≤ (2π)d(‖f̃n − f‖2 + ‖f − fn‖2)→ 0.

Thus F [f̃n] converges to the same element as F [fn] as claimed. Moreover, one can show that F : L2(Rd)→
L2(Rd) inherits the linearity from the Fourier transform on S (Rd). In order prove that it is continuous
on L2(Rd) it suffices to prove that

〈F [f ],F [g]〉 = (2π)d〈f, g〉 (7)

for all f, g ∈ L2(Rd). Indeed, setting f = g in (7) implies that ‖F [f ]‖2 =
√

(2π)d‖f‖2, so that by linearity

‖F [fn]−F [f ]‖2 = ‖F [fn − f ]‖2 =
√

(2π)d‖fn − f‖2.

This implies that F [fn] → F [f ] in L2(Rd) whenever fn → f in L2(Rd). In order to prove (7), let
(fn)n∈N, (gn)n∈N ⊂ S (Rd) be sequences such that fn → f and gn → g in L2(Rd). Then by Proposi-
tion 3.19 we have

〈F [fn],F [gn]〉 = (2π)d〈fn, gn〉.
Thus it suffices to pass to the limit as n → +∞. As all functions converge in L2(Rd) we only treat the
right hand side term since the left hand side is completely analogous. Due to Hölder’s inequality

|〈fn, gn〉 − 〈f, g〉| ≤ |〈fn, gn − g〉|+ |〈fn − f, g〉| ≤ ‖fn(gn − g)‖1 + ‖(fn − f)g‖1
≤ ‖fn‖2︸ ︷︷ ︸
→‖f‖2

‖gn − g‖2︸ ︷︷ ︸
→0

+ ‖fn − f‖2︸ ︷︷ ︸
→0

‖g‖2 → 0.

This proves (7) and therefore it only remains to prove bijectivity. Note that by linearity and (7) we have
that

‖F [f ]−F [g]‖22 = ‖F [f − g]‖22 = (2π)d‖f − g‖22.
Hence F [f ] = F [g] implies that f = g in L2(Rd), which shows that F is injective. Finally, we show
that F is surjective. Fix h ∈ L2(Rd) and consider a sequence (hn)n∈N ⊂ S (Rd) be such that hn → h
in L2(Rd). Since the Fourier transform is bijective on S (Rd) we find a unique fn ∈ S (Rd) such that
F [fn] = hn. Again by Plancherel’s identity the fact that (hn) is a Cauchy-sequence implies that also (fn)
is a Cauchy-sequence with a limit f ∈ L2(Rd). By construction it follows that F [f ] = h, so that F is
surjective. �

Using approximation with Schwartz functions one can further show that for f ∈ L1(Rd) ∩ L2(Rd)
the abstract definition of the Fourier transform coincides a.e. with the classical one given by integration.
More precisely, using the construction of the proof of Theorem 2.42 combined with the construction of
exercise H 11.1 we obtain a sequence of Schwartz functions (fn)n∈N ⊂ S (Rd) that converges to f with
respect to the L1-norm and the L2-norm. Then for fixed k ∈ Rd we have that∣∣∣∣∫

Rd
f(y)e−ik·x dx−

∫
Rd
fn(y)e−ik·x dx

∣∣∣∣ ≤ ‖f − fn‖1 → 0.

This shows in particular that F [fn](k) →
∫
Rd f(y)e−ik·x dx pointwise in k and since the right hand side

in the above estimate is independent of k it follows from Lebesgue’s dominated convergence theorem
that the convergence also holds in L2(Bj(0)) for every ball Bj(0) ⊂ Rd. As F [fn] → F [f ] in L2(Rd) by
construction, we also have that F [fn] → F [f ] in L2(Bj(0)). Hence F [f ](k) =

∫
Rd f(x)e−ik·x dx for a.e.

k ∈ Bj(0). Using that Rd =
⋃
j∈NBj(0) we obtain that the functions agree a.e. on Rd which is the best

we can expect since an L2-function is only defined up to null sets.
The Fourier transform on L2(Rd) is not given by a Lebesgue integral when f /∈ L1(Rd). However, in

what follows we derive a representation via an ’improper’ Lebesgue integral.

Lemma 3.21. Let f ∈ L2(Rd). Then it holds that

F [f ](k) = lim
n→+∞

∫
Bn(0)

f(x)e−ik·x dx,
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where the limit is understood in the sense of L2(Rd) (not pointwise).

Remark 3.22. In dimension 1 the above result also holds for a.e. k ∈ R (this is called Carlson’s theorem).
To the best of the author’s knowledge the almost everywhere convergence in higher dimensions is an open
problem.

Proof of Lemma 3.21. Fix f ∈ L2(Rd) and consider its L2-Fourier transform F [f ] ∈ L2(Rd). Due to
exercise H 12.1 it holds that 1Bn(0)f ∈ L1(Rd) ∩ L2(Rd), so that due to Plancherel’s theorem (in the

L2-version) and the preceding arguments we have that∫
Rd

∣∣∣∣∣F [f ](k)−
∫
Bn(0)

f(x)e−ik·x dx

∣∣∣∣∣
2

dk = ‖F [f ]−F [1Bn(0)f ]‖22 = ‖F [f(1− 1Bn(0))]‖22

= (2π)d‖f(1− 1Bn(0))‖22 = (2π)d
∫
{‖x‖≥n}

|f(x)|2 dx.

Since 1{‖x‖≥n}(x)|f(x)|2 converges pointwise to 0 as n→ +∞ and is bounded by the integrable function

|f(x)|2, it follows from Lebesgue’s dominated convergence theorem that the right hand side vanishes when
n→ +∞. This proves the claim. �

Concerning other properties that we proved hitherto, their validity on L2(Rd) depends on whether
they are inherited from Schwartz functions. For instance, as we have seen Plancherel’s theorem extends
to L2(Rd). On the contrary, the fact that F [f ] is bounded and continuous (cf. Lemma 3.3) cannot be
true for every f ∈ L2(Rd) since the Fourier transform is bijective and not all L2-functions are continuous.
The connection between decay at infinity and smoothness leads to the so-called Sobolev spaces that are
beyond the scope of this course. We finally discuss the Fourier inversion theorem in the sense of L2 from
a more detailed perspective than mere bijectivity.

Corollary 3.23 (Structure of the inverse Fourier transform on L2(Rd)). Define the flipping operator
R : L2(Rd)→ L2(Rd) by R(f)(x) = f(−x). Then the inverse Fourier transform F−1 : L2(Rd)→ L2(Rd)
is given by the formula

F−1 =
1

(2π)d
R ◦ F .

In particular, also F−1 : L2(Rd)→ L2(Rd) is continuous.22

Proof. Fix h ∈ L2(Rd) and choose f ∈ L2(Rd) as the unique element such that h = F [f ]. We have to
prove that 1

(2π)d
R(F [h]) = f . Let (fn)n∈N ⊂ S (Rd) be such that fn → f in L2(Rd). Then by continuity

also F [fn] → F [f ] = h. By the Fourier inversion theorem on the Schwartz space we have pointwise for
all x ∈ Rd

fn(x) = F−1[F [fn]](x) =
1

(2π)d

∫
Rd
eik·xF [fn](k) dk =

1

(2π)d
R(F [F [fn]])(x)

In L2(Rd) this equality turns into fn = 1
(2π)d

(R ◦ F) (F [fn]). Since R◦F is continuous on L2(Rd) as the

composition of continuous functions we can pass to the L2-limit in n and conclude the proof. �

3.3. Tempered distributions and their Fourier transform. The final objects for which we want to
define their Fourier transform are so-called tempered distributions. First we define what is a distribution.

Definition 3.24 (Distributions). Let O ⊂ Rd be an open set. A distribution is a linear functional
T : C∞c (O)→ R (or C) that is continuous with respect to the following notion of convergence:

ϕn
C∞c (O)→ ϕ :⇐⇒ {∃K ⊂ O compact : supp(ϕn) ⊂ K ∀n & ‖∂αϕn − ∂αϕ‖∞ → 0 ∀α ∈ Nd0}.

One writes T ∈ D′(O).

Example 3.25. The following are examples of distributions T ∈ D′(Rd).

22The continuity of the inverse of a linear mapping between Banach spaces follows also from the more general open
mapping theorem in functional analysis.
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(i) T (ϕ) = ϕ(0) (this is also called the Dirac delta T = δ0);
(ii) T (ϕ) = ∂αϕ(x0) for some fixed multi-index α ∈ Nd0 and some fixed x0 ∈ Rd;
(iii) Tf (ϕ) =

∫
Rd f(x)ϕ(x) dx, where f is integrable on every compact subset K ⊂ Rd;

(iv) T (ϕ) =
∫
Rd f(x)∂αϕ(x) dx for some fixed multi-index α ∈ Nd0 and f as in (iii).

(iv) T (ϕ) =
∫
Rd ϕ(x) dµ, where µ is a measure on (Rd,Ld) that is finite on every compact subset of

Rd.
On distributions one can define many operations by duality. In the next definition we present three

important examples.

Definition 3.26. Let O ⊂ Rd be open and T ∈ D′(O) be a distribution.

a) The partial derivative of T is defined by

(∂αT )(ϕ) = (−1)|α|T (∂αϕ).

b) If ψ ∈ C∞(Rd), then the product of T with ψ is defined by

(ψT )(ϕ) = T (ψϕ).

c) If O = Rd and ψ ∈ C∞c (Rd) then the convolution of ψ with T is a function defined by

(ψ ∗ T )(x) = T (ψ(x− ·))
Remark 3.27. One can show that the partial derivative and the product with a smooth function are
again distributions, while the convolution is a C∞-function on Rd. The idea behind these definitions
is that they coincide with the classical definitions in the case when T is a distribution as in Example
3.25(iii). For instance, when f ∈ Cm(Rd), then for any multi-index α ∈ Nd0 with |α‖ ≤ m we have by
integration by parts (no boundary terms since ϕ has compact support) that

(∂αTf )(ϕ) = (−1)|α|
∫
Rd
f(x)∂αϕ(x) dx =

∫
Rd
∂αf(x)ϕ(x) dx = T∂αf (ϕ).

Similarly, it holds that (ψTf ) = (Tψf ) and ψ ∗Tf (x) = ψ ∗ f(x). Studying PDEs often leads to the notion
of distributional derivatives of integrable functions. This means exactly the quantity ∂αTf , which makes
sense even when f is not differentiable. For instance, consider the heavyside-function f = 1[0,+∞) in
dimension 1. Then for any ϕ ∈ C∞c (R) we have

T ′f (ϕ) = −
∫
R
f(x)ϕ′(x) dx = −

∫ ∞
0

ϕ′(x) dx = ϕ(0),

where we used that ϕ has compact support. This means that the distributional derivative of f is the
Dirac delta centered in 0.

We can also speak about the convergence of distributions as defined below.

Definition 3.28. Let O ⊂ Rd be open and (Tn)n∈N ⊂ D′(O) be a sequence of distributions. We say that
Tn converges to some T ∈ D′(O) if Tn(ϕ)→ T (ϕ) for all ϕ ∈ C∞c (O).

Using convolution techniques one can then show that for every distribution T ∈ D′(O) there exists
a sequence of functions (fn)n∈N ⊂ C∞c (O) such that Tfn → T . Moreover, the notion of approximate
identity (cf. Analysis 3) can be phrased in the sense of convergence of distributions to the Dirac delta.

Can we also define a Fourier transform acting on distributions? Again we would like to do this by
duality. Consider a distribution Tf with f ∈ L1(Rd). Then the Fourier transform of Tf should be given
by TF [f ] which leads to

TF [f ](ϕ) =

∫
Rd
ϕ(k)F [f ](k) dk =

∫
Rd
ϕ(k)

∫
Rd
e−ik·xf(x) dxdk

Fubini
=

∫
Rd
f(x)F [ϕ](x) dx = Tf (F [ϕ]).

Can we extend the right hand side to any distribution? The answer is no since the Fourier transform of a
C∞c (Rd) never has compact support (cf. exercises), so that T (F [ϕ]) is not defined in general. However, we
know that the Fourier transform maps C∞c (Rd) into S (Rd). Hence we could define the Fourier transform
on distributions that are well-defined on S (Rd). Since C∞c (Rd) ⊂ S (Rd), this means that those are
special distributions.
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Definition 3.29. A tempered distribution is a linear functional T : S (Rd)→ R (or C) that is continuous
with respect to the following type of convergence:

ϕn
S (Rd)→ ϕ :⇐⇒ ∀α, β ∈ Nd0 : sup

x∈Rd
|xα∂β(ϕn(x)− ϕ(x))| → 0.

We write T ∈ S ′(Rd).

Note that every tempered distribution is also a distribution on Rd since the convergence for C∞c (Rd)-
functions implies the convergence in S (Rd). Most of the definitions made for distributions make also
sense for tempered distributions. We collect them in the definition below.

Definition 3.30. Let T, (Tn)n∈N ⊂ S ′(Rd) be tempered distributions, α ∈ Nd0 and ψ ∈ S (Rd).
a) The partial derivative of T is defined by

(∂αT )(ϕ) = (−1)αT (∂αϕ).

b) The product of T with ψ23 is defined by

(ψT )(ϕ) = T (ψϕ).

c) If O = Rd the convolution of ψ with T is defined as the function

(ψ ∗ T )(x) = T (ψ(x− ·)).
d) We say that Tn → T in S ′(Rd) if Tn(ϕ)→ T (ϕ) for all ϕ ∈ S (Rd).

Note that the partial derivative and the product are again tempered distributions. Moreover, one can
show that the convolution belongs to C∞(Rd) and one can control its growth and of all its derivatives.

Finally, we introduce the Fourier transform for tempered distributions which are the most general
objects for which the Fourier transform is defined (note that every Lp(Rd) function can be interpreted as
tempered distribution in the sense of Example 3.25 (iii)). However, not all cases in Example 3.25 define

tempered distributions. For instance, the locally integrable function f(x) = ex
2

grows to quickly so that

its product with the Schwartz function ϕ(x) = e−x
2

has no finite integral on R.

Theorem 3.31. Given T ∈ S ′(Rd) define its Fourier transform T̂ ∈ S ′(Rd) by T̂ (ϕ) = T (F [ϕ]). Then
the Fourier transform is a linear bijective map from S ′(Rd) to S ′(Rd).

Proof. First we show that T̂ is again a tempered distribution. Since F [ϕ] ∈ S (Rd) for all ϕ ∈ S (Rd)
it is well-defined. Linearity follows from linearity of the Fourier transform and linearity of T . Thus it
remains to show that it is continuous. By linearity it suffices to prove that if (ϕn)n∈N ⊂ S (Rd) is a

sequence such that ϕn
S (Rd)→ 0 then T̂ (ϕn) → 0. By definition and continuity of T this reduces to prove

that F [ϕn]
S (Rd)→ 0. This is a consequence of exercise H 12.5.

To conclude the proof, we need to show that the Fourier transform is bijective. We first prove injectivity.

By linearity it suffices to prove that T̂ = 0 implies that T = 0. Let ϕ ∈ S (Rd) be given. Then F−1[ϕ] ∈
S (Rd) by the Fourier inversion theorem on the Schwartz space and hence

0 = T̂ (F−1[ϕ]) = T (F [F−1[ϕ]]) = T (ϕ),

where we used that F−1 is also the right inverse to F (cf. the proof of Theorem 3.18). Since ϕ ∈
S (Rd) was arbitrary, the above equation implies that T = 0. To prove surjectivity, let T ∈ S ′(Rd)
and define a tempered distribution S ∈ S ′(Rd) by the formula S(ϕ) = T (F−1[ϕ]). Again this is a
tempered distribution since the inverse Fourier transform is also linear and continuous with respect to
the convergence in S (Rd) (the argument being the same as for the Fourier transform in H 12.5). Then
by definition we have

Ŝ(ϕ) = S(F [ϕ]) = T (F−1[F [ϕ]]) = T (ϕ).

23Note that the product of a Schwartz function with a C∞(Rd) function is not necessarily again a Schwartz function.
Hence the product ψT is in general not defined as a tempered distribution when ψ ∈ C∞(Rd). One can weaken the
assumption that ψ ∈ S (Rd) by requiring that ψ is smooth and that ψ and all its derivatives grow at most polynomially.
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Note that we obtained the formula T̂−1 = T ◦ F−1. �

Many properties of the Fourier transform on S (Rd) transform to tempered distributions by duality.
For instance, it holds that

∂̂αT (ϕ) = ∂αT (F [ϕ]) = (−1)|α|T (∂αF [ϕ])
Prop. 3.7

= T (F [x 7→ i|α|xαϕ(x)])

= T̂ (x 7→ i|α|xαϕ(x)) = (i|α|kαT̂ )(ϕ),

which is well-defined in the sense of Footnote 23. Compare this formula with Proposition 3.5.
This shall be enough for our short introduction to (tempered) distributions.

4. An introduction to linear operators on Banach/Hilbert spaces

In what follows we let K ∈ {R,C} and consider K-vector spaces, i.e., the scalars are either real or
complex numbers. We recall the definition of Banach and Hilbert spaces; cf. previous Analysis courses.

Definition 4.1. A normed K-vector space (X, ‖ · ‖) is called a Banach space if every Cauchy sequence
with respect to the norm ‖ · ‖ has a limit in X. It is called a Hilbert space if it is a Banach space and the

norm is given by ‖x‖ =
√
〈x, x〉, where 〈·, ·〉 : X ×X → K is a scalar product on X.

For complex vector spaces we shall always consider scalar products to be linear in the second compo-
nent.

4.1. Linear operators on normed spaces. Next we introduce linear operators between K-vector
spaces X and Y (both with the same scalars).

Definition 4.2. Let X,Y be normed K-vector spaces. A bounded linear operator between X and Y is
a linear function A : X → Y that is continuous. We write A ∈ L(X;Y ). For A ∈ L(X;Y ) we define the
operator-norm by

‖A‖ = ‖A‖L(X;Y ) := sup
x∈X\{0}

‖A(x)‖Y
‖x‖X

= sup
x∈X
‖x‖X=1

‖A(x)‖Y .

When Y = K we write L(X;Y ) = X ′. This is the so-called topological dual space of X and its elements
are called linear functionals.

As shown in the next lemma the operator norm characterizes the continuity of linear functions.

Lemma 4.3. Let X,Y be normed K-vector spaces and A : X → Y be a linear function. Then the
following statements are equivalent:

a) A ∈ L(X;Y );
b) A is continuous in 0;

c) ‖A‖ := sup
x∈X\{0}

‖A(x)‖Y
‖x‖X

= sup
x∈X
‖x‖X=1

‖A(x)‖Y < +∞.

Proof. Clearly a) implies b). Next we show that b) implies c). Assume by contradiction that ‖A‖ = +∞.
Then for every n ∈ N there exists xn ∈ X with ‖xn‖X = 1 and ‖A(xn)‖Y ≥ n. Define x̃n = xn/

√
n.

Then ‖x̃n‖X = 1/
√
n, so that x̃n → 0 in X. However, by linearity of A and homogeneity of the norm

lim
n→+∞

‖A(x̃n)‖Y = lim
n→+∞

1√
n
‖A(xn)‖Y ≥ lim

n→+∞

√
n = +∞,

which contradicts the continuity of A in 0.
Finally we show that c) yields a). Let x, x′ ∈ X be such that x 6= x′. Then by linearity

‖A(x)−A(x′)‖Y = ‖A(x− x′)‖Y ≤ ‖A‖‖x− x′‖X .

Obviously this estimate also holds for x = x′, so that A is Lipschitz continuous. Hence A ∈ L(X;Y ). �
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The previous lemma motivates the definition of unbounded operators as those operators for which
‖A‖ = +∞. However, usually unbounded operators are considered to be defined on a subspace of some
larger space. This is not necessary for general normed spaces since every subspace is still a normed
space itself. However, as soon as we are interested in Banach or Hilbert spaces, subspaces may loose the
completeness property when they are not closed. This phenomenon is particular for infinite dimensional
spaces. Anyway, linear maps between finite dimensional spaces are always continuous.

Definition 4.4. Let X,Y be normed K-vector spaces and D(A) ⊂ X be a subspace. A linear function
A : D(A)→ Y is called an unbounded linear operator if

‖A‖ := sup
x∈D(A)\{0}

‖A(x)‖Y
‖x‖X

= sup
x∈D(A)
‖x‖X=1

‖A(x)‖Y = +∞.

The space D(A) is the domain of the unbounded linear operator.

We look at some examples:

• Let X = Y = L2(Rd). Then the Fourier transform F belongs to L(X;Y ) and due to Plancherel’s

theorem we have ‖F‖ =
√

(2π)d.
• Let X = Y = Lp(Rd) and for x ∈ Rd consider the shift operator Tx(f) = f(x−·)). By the change

of variables it follows that ‖Tx‖ = 1 for all x ∈ Rd.
• Let X = L1(Rd) and Y = Cb(Rd) equipped with the supremum norm. Then the Fourier transform

belongs to L(X;Y ) and by Lemma 3.3 we know that ‖F‖ ≤ 1.
• for fixed g ∈ C(Rd) and X = Y = L1(Rd) consider the multiplication operator A(f) = gf with

domain D(A) = {f ∈ L1(Rd) : gf ∈ L1(Rd)}. In this case it depends on g whether A is bounded.
If g is bounded, then D(A) = L1(Rd) and ‖A‖ ≤ ‖g‖∞ by Hölder’s inequality. If g is not bounded,
then there exists a sequence xn ∈ Rd such that |g(xn)| ≥ n for all n ∈ N. Consider then for fixed
n ∈ N the sequence fk = 1

λd(B1/k(0))1B1/k(xn). Note that ‖fk‖1 = 1 for all k ∈ N. Moreover,

|g(xn)| −
∫
Rd
|g(x)fk(x)|dx =

1

λd(B1/k(0))

∫
B1/k(xn)

(|g(xn)| − |g(x)|) dx ≤ sup
‖x−xn‖≤1/k

|g(xn)− g(x)|.

By continuity of g the right hand side tends to zero when k → +∞. Hence there exists kn such
that the right hand side is bounded by 1 for all k ≥ kn. The sequence fn = fkn then satisfies
‖fn‖1 = 1, but ‖A(fn)‖1 ≥ n− 1. Since n was arbitrary the operator cannot be bounded.

• the differentiation operator A = d
dx : L2(R) → L2(R) with domain D(A) = S (R) is unbounded

(cf. exercises)

In the next lemma we see that the set of bounded linear operators becomes a Banach space as soon as Y
is a Banach space.

Lemma 4.5. Let X,Y be normed K-vector spaces. The space L(X;Y ) becomes a normed K-vector space
with the operator norm ‖ · ‖L(X;Y ). When Y is a Banach space, then so is L(X;Y ). In particular, X ′ is
always a Banach space.

Proof. See exercises. �

Our next result in this rather general setting of normed spaces is the bounded linear transformation
theorem.

Theorem 4.6. Let Z, Y be normed K-vector spaces and X ⊂ Z be a subspace that is dense in Z with
respect to ‖ · ‖Z . Assume that Y is a Banach space. Then every A ∈ L(X;Y ) can be extended uniquely to

an operator Ã ∈ L(Z;Y ).

Proof. The proof is a minor adaption from the extension procedure of the Fourier transform from S (Rd)
to L2(Rd) except that Plancherel’s equality has to be replaced by the inequality ‖Ax−Ay‖Y ≤ ‖A‖‖x−
y‖Z for all x, y ∈ X, so we leave the details to the interested reader. �
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Finally we introduce the notion of the adjoint operator. In general also this concept makes sense for
normed spaces, but soon we will focus on the Hilbert space setting where the structure becomes easier.
At this point we only define the adjoint operator for a bounded linear operator.

Definition 4.7 (Adjoint operator). Let X,Y be normed K-vector spaces with dual spaces X ′ and Y ′,
respectively. For A ∈ L(X;Y ) the adjoint operator A′ : Y ′ → X ′ is defined by the formula

(A′(y′))(x) = y′(A(x)).

It holds that A′ ∈ L(Y ′;X ′).

Proof. We first have to show that the adjoint operator is well-defined. To this end, we first check that
A′(y′) ∈ X ′. Let λ ∈ K and x1, x2 ∈ X. Then by definition and the linearity of A and y′ we have

(A′(y′))(λx1 + x2) = y′(A(λx1 + x2)) = λy′(A(x1)) + y′(A(x2)) = λ(A′(y′))(x1) + (A′(y′))(x2),

which shows that A′(y′) is linear on X. Next we show that it is continuous. Note that

|(A′(y′))(x)| = |y′(A(x))| ≤ ‖y′‖‖A(x)‖Y ≤ ‖y′‖‖A‖‖x‖X , (8)

which shows that ‖A′(y′)‖ ≤ ‖y′‖‖A‖ < +∞. Hence A′(y′) ∈ X ′. The second property concerns the
linearity on Y ′. Let λ ∈ K and y′1, y

′
2 ∈ Y ′. Then for every x ∈ X we have

(A′(λy′1 + y′2))(x) = (λy′1 + y′2)(A(x)) = λy′1(A(x)) + y′2(A(x)) = λ(A′(y′1))(x) + (A′(y′2))(x).

Thus A′(y′) is linear in y′. Finally, we need to show continuity with respect to y′. Note that on X ′ and
Y ′ we take the operator norm. By (8) we have that

sup
y′∈Y ′
‖y′‖Y ′=1

‖A′(y′)‖X′ = sup
y′∈Y ′
‖y′‖Y ′=1

sup
x∈X
‖x‖X=1

‖(A′(y′))(x)| ≤ ‖A‖ < +∞.

�

The final question we want to address in this subsection is whether the adjoint operator already
determines the operator itself. This question reduces to the following one: Does the equality A′1(y′) =
A′2(y′) for all y′ ∈ Y ′ imply that A1 = A2. Inserting the definition of the adjoint operator we obtain that

y′(A1(x)) = y′(A2(x)) ∀y′ ∈ Y ′, x ∈ X ?
=⇒ A1 = A2. (9)

This question can be answered affirmatively with the help of the Hahn-Banach theorem, another instance
for which one uses the axiom of choice. For the sake of completeness we mention it here without proof.

Theorem 4.8 (Hahn-Banach theorem for normed spaces). Let X be a normed K-vector space and

Z ⊂ X be a non-trivial subspace. Assume that f ∈ Z ′. Then f can be extended to an element f̃ ∈ X ′
with ‖f̃‖X′ = ‖f‖Z′ .

This theorem implies in particular that for every x0 ∈ X \ {0} there exists x′ ∈ X ′ with x′(x0) = ‖x0‖
and ‖x′‖X′ = 1 by setting Z = span(x0) and f(λx0) = λ‖x0‖. The validity of (9) then follows from the
fact that if A1(x) 6= A2(x) for some x ∈ X then A1(x)−A2(x) 6= 0, so that there exists y′ ∈ Y ′ such that
y′(A1(x)−A2(x)) 6= 0, which yields a contradiction.

4.2. Linear operators on Hilbert spaces. We now focus on the case when X and Y are Hilbert
spaces. We will prove the Riesz-representation theorem which shows that the dual space of any Hilbert
space X can be identified with X. For the proof we will need a result about the existence of projections
that is interesting on its own.

Proposition 4.9 (Projection onto closed, convex24 sets). Let X be a K-Hilbert space and K ⊂ X be a
nonempty, closed, convex set. Then for every x ∈ X there exists a unique element xK ∈ K such that
‖x− xk‖ ≤ ‖x− y‖ for all y ∈ K.

24A subset K of a vector space X is called convex if for all x1, x2 ∈ K and t ∈ [0, 1] it holds that tx1 + (1− t)x2 ∈ K.
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Proof. By considering the non-empty, closed and convex set x − K we can assume that x = 0 and we
need to prove the existence and uniqueness of the minimizer of the problem

inf
y∈K
‖y‖.

First we prove existence. Note that this is a non-trivial issue since bounded and closed sets are not always
compact in infinite dimensional normed spaces. Consider a minimizing sequence (yn)n∈N ⊂ K such that
limn→+∞ ‖yn‖ = infy∈K ‖y‖ =: δ. Then for any m,n ∈ N we have by convexity that yn+ym

2 ∈ K, so that
the parallelogram law (cf. Analysis 3) yields∥∥∥∥yn − ym2

∥∥∥∥2

=
1

2
‖ym‖2 +

1

2
‖yn‖2 −

∥∥∥∥yn + ym
2

∥∥∥∥2

≤ 1

2
‖ym‖2 +

1

2
‖yn‖2 − δ2

Since ‖yn‖ → δ this implies that (yn)n∈N is a Cauchy sequence. Indeed, the right hand side tends to
zero when n,m → +∞. Being X complete there exists a limit y = limn→+∞ yn. Since K is closed by
assumption it follows that y ∈ K and by continuity of the norm we conclude that ‖y‖ = δ. By definition
of δ it follows that y is the claimed minimizer.

Next, we show uniqueness. To this end, assume that there exist two elements y, ỹ ∈ K such that
‖y‖ = ‖ỹ‖ = δ. Repeating the above estimate with yn replaced by y and ym replaced by ỹ be obtain∥∥∥∥y − ỹ2

∥∥∥∥2

≤ 0.

Hence y = ỹ. �

The statement of the previous proposition remains true for so-called reflexive and strictly convex
Banach spaces, but fails for general Banach spaces (even in finite dimensions). For instance, consider in
R2 the set K = [0, 1]×{0}. Then for the point x = (0, 1) all points in y ∈ K satisfy ‖y−x‖∞ = 1. Hence
uniqueness fails. In infinite dimensions even the existence of (maybe many) closest points fails in general.

Before proving the Riesz representation theorem we need to study the concept of orthogonal comple-
ments in Hilbert spaces.

Definition 4.10. Let X be a K-Hilbert space with scalar product 〈·, ·〉.
(i) x1 ∈ X is called orthogonal to x2 ∈ X if 〈x1, x2〉 = 0;

(ii) Given S ⊂ X the orthogonal complement of S is defined by

S⊥ = {x ∈ X : 〈x, s〉 = 0 ∀s ∈ S}.

Lemma 4.11. Let X be a K-Hilbert space and S ⊂ X. Then S⊥ is a closed subspace of X.

Proof. Let λ ∈ K and x1, x2 ∈ S⊥. Then for any s ∈ S we have that

〈λx1 + x2, s〉 = λ 〈x1, s〉︸ ︷︷ ︸
=0

+ 〈x2, s〉︸ ︷︷ ︸
=0

= 0.

Thus S⊥ is a subspace. Next, let (xn)n∈N ⊂ S⊥ be a sequence such that xn → x ∈ X. The Cauchy-
Schwarz inequality (cf. Analysis 3) implies that for all s ∈ S

|〈xn, s〉 − 〈x, s〉| = |〈xn − x, s〉| ≤ ‖xn‖‖s‖ → 0.

Since 〈xn, s〉 = 0 for all n ∈ N this yields that 〈x, s〉 = 0. As s ∈ S was arbitrary this implies that x ∈ S⊥,
so that S⊥ is closed. �

Since subspaces are always nonempty and convex, there exists in particular a projection onto closed
subspaces. This implies the following corollary.

Corollary 4.12 (Orthogonal decomposition). Let X be a K-Hilbert space and U ⊂ X be a closed
subspace. Then every x ∈ X can be uniquely decomposed as x = x1 + x2 with x1 ∈ U and x2 ∈ U⊥. We
write X = U ⊕ U⊥.
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Proof. Let x1 be the unique element in U that satisfies ‖x− x1‖ ≤ ‖x− y‖ for all y ∈ U . We claim that
x− x1 ∈ U⊥. Fix u ∈ U . Then for all ε ∈ R we have by minimality that

‖x− x1‖2 ≤ ‖x− (x1 + εu)︸ ︷︷ ︸
∈U

‖′2 = ‖x− x1‖2 + ε2‖u‖2 − 2εRe(〈x− x1, u〉)

This is only possible for all ε ∈ R when Re(〈x − x1, u〉) = 0. Since also v = iu ∈ U (if K = R we are
already done) we further obtain that 0 = Re(〈x− x1, v〉) = Re(i〈x− x1, u〉) = −Im(〈x− x1, u〉), so that
finally 〈x− x1, u〉 = 0. Hence x− x1 ∈ U⊥.

To show uniqueness of the representation, assume that x1 + x2 = y1 + y2 with x1, y1 ∈ U and
x2, y2 ∈ U⊥. Then x1 − y1 = y2 − x2. Taking the scalar product with x1 − y1 ∈ U and y2 − x2 ∈ U⊥ we
obtain by orthogonality that ‖x1 − y1‖2 = ‖y2 − x2‖2 = 0. Thus x1 = y1 and x2 = y2 as claimed. �

Now we are in a position to prove the Riesz representation theorem about the dual space of K-Hilbert
spaces.

Theorem 4.13 (Riesz representation theorem). Let X be a K-Hilbert space and x′ ∈ X ′. Then there
exists a unique y ∈ X such that

x′(x) = 〈y, x〉 ∀x ∈ X.
Moreover, ‖x′‖X′ = ‖y‖X .

Proof. Fix x′ ∈ X ′. We first prove the existence of y. Let U := {x ∈ X : x′(x) = 0} be the kernel of x′.
Since x′ is continuous and linear it follows that U is a closed subspace. If U = X then x′ = 0 and we
choose y = 0 to conclude. Thus we can assume that U 6= X, so that due to Corollary 4.12 there exists
u⊥ ∈ U⊥ such that x′(u⊥) 6= 0. Up to normalization we can assume that x′(u⊥) = 1. Then for all x ∈ X
it holds that x− x′(x)u⊥ ∈ U and therefore by orthogonality

〈u⊥, x〉 = 〈u⊥, x− x+ x′(x)u⊥〉 = x′(x)‖u⊥‖2.

Setting y = u⊥

‖u⊥‖2 we conclude from the above equality that 〈y, x〉 = x′(x) as claimed. To prove uniqueness

note that 〈y1, x〉 = 〈y2, x〉 for all x ∈ X implies that 〈y1− y2, x〉 = 0 for all x ∈ X. Setting x = y1− y2 we
deduce that ‖y1−y2‖2 = 0, which proves uniqueness. Finally, note that by the Cauchy-Schwarz inequality

‖x′‖X′ = sup
x∈X
‖x‖X=1

|x′(x)| = sup
x∈X
‖x‖X=1

|〈y, x〉| ≤ ‖y‖X .

On the other hand, as soon as y 6= 0 (otherwise ‖y‖X = 0 = ‖x′‖X′ holds true) we know that y/‖y‖X
has norm 1, so that

‖x′‖X′ = sup
x∈X
‖x‖X=1

|x′(x)| = sup
x∈X
‖x‖X=1

|〈y, x〉| ≥ |〈y, y/‖y‖X〉 = ‖y‖X .

Thus ‖x′‖X′ = ‖y‖X . �

By the Cauchy-Schwarz inequality, for every y ∈ X the functional x 7→ 〈y, x〉 belongs to X ′. Hence we
obtain the following corollary.

Corollary 4.14. Let X be a K-Hilbert space. Then the map I : X → X ′ defined by y 7→ x 7→ 〈y, x〉 is a
bijective, conjugate-linear isometry.

With the map I the spaces X and X ′ can be identified. We stress that this does not mean that
the elements are equal which sometimes leads to confusion. For instance, one can show that L2(Rd) is
isometrically isomorphic to `2 = L2(N). But in L2(Rd) we have equivalence classes of square-integrable
functions, while `2 contains square-summable sequences.

Next we study the adjoint operator between Hilbert spaces X and Y inserting the identification of
the dual spaces. Then the adjoint operator belongs to L(Y ;X) and is given by A∗ = I−1 ◦ A′ ◦ I, or
equivalently, I ◦A∗ = A′ ◦ I, which means that A∗(y) is the unique element such that

〈A∗(y), x〉 = A′(〈y, ·〉)(x) = 〈y,A(x)〉.
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Often the round brackets are omitted for linear operators and we will do the same in what follows. In the
definition below we define the adjoint also for unbounded operators. We will always assume that their
domain D(A) is dense in some Hilbert space. This is no restriction since otherwise we can consider the
closure of D(A) which is again a Hilbert space.

Definition 4.15. Let X,Y be K-Hilbert spaces with scalar products 〈·, ·〉X and 〈·, ·〉Y , respectively. Let
A : D(A) ⊂ X → Y be a linear function, where D(A) is a dense subspace of X. The adjoint operator
A∗ : D(A∗) ⊂ Y → X is defined by

〈A∗y, x〉X = 〈y,Ax〉Y ∀x ∈ D(A), y ∈ D(A∗),

where D(A∗) = {y ∈ Y : D(A) 3 x 7→ 〈y,Ax〉Y is a bounded functional}.

Remark 4.16. Since we assume that D(A) is dense in X, for any y ∈ D(A∗) the bounded functional
x 7→ 〈A∗y, x〉 can be extended uniquely to an element in X ′ ∼ X. Hence A∗y ∈ X is uniquely defined.
Moreover, D(A∗) is always a linear space and A∗ is linear in y. If A ∈ L(X;Y ) then D(A) = X and
D(A∗) = Y by the Cauchy-Schwarz inequality. If we only know that D(A∗) = Y , then one can show
that A was already bounded on the dense set D(A) and thus can be extended to an element of L(X;Y ).
However, this is beyond the scope of this introduction.

We next give some definitions that can be useful in mathematical physics, for instance in quantum
mechanics.

Definition 4.17. Let X be a K-Hilbert space and let A : D(A) ⊂ X → X be a linear operator (not
necessarily bounded) such that D(A) is dense in X.

(i) We call A self-adjoint if D(A) = D(A∗) and A = A∗;
(ii) We call A symmetric (or hermitian25) if

〈Ax, y〉 = 〈x,Ay〉 ∀x, y ∈ D(A);

(iii) We say that A is closed if for every sequence (xn)n∈N ⊂ D(A) converging to some x ∈ X and
such that Axn → y ∈ X we have x ∈ D(A) and Ax = y.26

(iv) We say that A is normal if it is closed and A∗A = AA∗. In particular this requires that D(A∗A) =
D(AA∗).

Remark 4.18. Note that for a symmetric operator it holds that D(A) ⊂ D(A∗). If equality holds, then
A is self-adjoint. The Hellinger-Toeplitz theorem states that every symmetric operator with D(A) = X
is already bounded. One can also show that A∗ is always a closed operator, so that self-adjoint operators
are normal.

We have no time to discuss why the above definitions are useful. We just mention that a version of the
spectral theorem holds for normal operators. In the next lemma we collect some elementary properties
of the adjoint operator. To avoid technical issues we restrict it to the case of bounded, linear operators.

Lemma 4.19. Let X be a K-Hilbert space and A,B ∈ L(X;X). Then the following properties hold:

(i) (A∗)∗ = A;
(ii) (AB)∗ = B∗A∗;

(iii) (A+ λB)∗ = A∗ + λB∗ for all λ ∈ K;
(iv) ‖A‖ = ‖A∗‖;
(v) ‖A∗A‖ = ‖AA∗‖ = ‖A‖2.

Proof. (i) By definition we have

〈y, (A∗)∗x〉 = 〈(A∗)∗x, y〉 = 〈x,A∗y〉 = 〈A∗y, x〉 = 〈y,Ax〉.
Since this holds for all y ∈ X it follows that (A∗)∗x = Ax for all x ∈ X.

25Mathematicians prefer the term symmetric, while in the physics literature the term hermitian prevails
26The concept of closed operators is also used for linear operators between Banach spaces X and Y with the obvious

modification in the definition. Note that any bounded operator can be extended to a closed operator. However, not all
closed operators are continuous.
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(ii) It holds that

〈y, (AB)∗x〉 = 〈(AB)∗x, y〉 = 〈x,ABy〉 = 〈A∗x,By〉 = 〈B∗A∗x, y〉 = 〈y,B∗A∗x〉.

As in (i) this yields the claim.
(iii) We have that

〈y, (A+ λB)∗x〉 = 〈(A+ λB)∗x, y〉 = 〈x, (A+ λB)y〉 = 〈x,Ay〉+ λ〈x,By〉 = 〈x,Ay〉+ λ 〈x,By〉

= 〈A∗x, y〉+ λ 〈B∗x, y〉 = 〈y,A∗x〉+ λ 〈y,B∗x〉 = 〈y, (A∗ + λB∗)x〉.

(iv) For every x ∈ X we have

‖A∗x‖2 = 〈A∗x,A∗x〉 = 〈x,AA∗x〉 ≤ ‖x‖‖AA∗x‖ ≤ ‖x‖‖A‖‖A∗x‖. (10)

Thus ‖A∗x‖ ≤ ‖A‖‖x‖, which yields that ‖A∗‖ ≤ ‖A‖. Using (i) this further implies that ‖A‖ =
‖(A∗)∗‖ ≤ ‖A∗‖, so that ‖A‖ = ‖A∗‖ as claimed.

(v) Using the elementary inequality ‖AB‖ ≤ ‖A‖‖B‖ together with (iv) we obtain that ‖AA∗‖ ≤
‖A‖‖A∗‖ = ‖A‖2. Moreover, from (10) it follows that ‖A∗x‖2 ≤ ‖AA∗‖‖x‖2, which yields that ‖AA∗‖ ≥
‖A∗‖2 = ‖A‖2. Hence ‖AA∗‖ = ‖A‖2. Using this estimate for Ã = A∗ and (i) we conclude that also
‖A∗A‖ = ‖A∗‖2 = ‖A‖2. �

As an example let us consider the Fourier transform F ∈ L(L2(Rd);L2(Rd)). We claim that its adjoint
is (2π)d times the inverse Fourier transform. Indeed, fix f, g ∈ L2(Rd). Since also F−1[f ] ∈ L2(Rd)
Plancherel’s theorem implies that

〈(2π)dF−1[f ], g〉 = 〈f,F [g]〉,

so that F∗ = (2π)dF−1. In particular, F is a normal operator since it is continuous and as shown in
a previous lecture the Fourier transform commutes with its inverse. In the exercises you will see some
further examples of adjoint operators.

As a last topic of this course we introduce the basics for the spectral theory of linear operators. This
topic can take a whole course on its own. Therefore we just focus on the very basics so that you are
minimally prepared for further courses where linear operators appear.

Definition 4.20. Let X be a complex Hilbert space and A : D(A) ⊂ X → X be a linear operator that
is densely defined, i.e., D(A) is dense in X.

(a) The set of λ ∈ C such that A − λI has no bounded inverse is called the spectrum of A and is
denoted by σ(A);

(b) Assume from now on that A is closed27 Then the spectrum is further divided into three sets:
(i) The set of λ ∈ C such that A− λI is not injective is called the point spectrum of A and we

denote it by σp(A). It consists of the eigenvalues of A.
(ii) The set of λ ∈ C such that A− λI is injective, not surjective, but with dense range in X, is

called the continuous spectrum of A and we denote it by σc(A).
(iii) The set of λ ∈ C such that A− λI is injective and its range is not dense in X is called the

residual spectrum and we denote it by σr(A).

At first glance there is one case missing, namely that A−λI is bijective, but the inverse is not bounded.
This cannot occur for closed operators. Indeed, as we show in the lemma below the inverse of a closed
operator is bounded provided its domain is complete. We will use the so-called closed graph theorem
which is a deep result characterizing the continuity of linear operators between Banach spaces. Due to a
lack of time we cannot prove it in this course.

27One can show that when A is not closed then the spectrum satisfies σ(A) = C. Indeed, assume that there exists λ ∈ C
such that there exists a bounded, linear inverse R : X → D(A) of A− λI. We show that A must be closed. Let (xn)n∈N ⊂
D(A) be such that xn → x ∈ X and Axn → y ∈ X. Then x = limn→∞ xn = limn→∞R(A− λI)xn = R(y − λx) ∈ D(A).
Moreover, it follows that (A− λ)x = y − λx, so that Ax = y and thus A is closed. However, no satisfactory spectral theory
is available for non-closed operators.
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Theorem 4.21 (Closed graph theorem on Banach spaces). Let X,Y be K-Banach spaces and A : X → Y
be linear. Then A is continuous if and only if A is closed, i.e., for all sequences (xn)n∈N ⊂ X such that
xn → x ∈ X and Axn → y ∈ Y it follows that Ax = y.28

Corollary 4.22 (Continuity of the inverse of closed operators). Let X,Y be K-Hilbert spaces29 and
A : D(A) ⊂ X → Y be linear, bijective and closed. Then the inverse operator A−1 : Y → D(A) belongs
to L(Y ;X).

Proof. It is a well-known fact that the inverse of a linear function is linear. We show that the inverse
operator is closed. Then the statement follows from the closed graph theorem since Y is complete. Note
that it does not matter whether D(A) is complete. Let (yn)n∈N ⊂ Ran(A) = D(A−1) be such that
yn → y ∈ Y and A−1yn → x ∈ X. Then there exists xn ∈ D(A) such that yn = Axn. Note that
xn = A−1yn → x ∈ X and Axn = yn → y ∈ Y . Since A is closed it follows that x ∈ D(A) and Ax = y.
Hence y ∈ D(A−1) and A−1y = x. Thus by definition A−1 is closed. �

Note that we did not use that D(A−1) is complete to show that the inverse is closed, but this was only
used to apply the closed graph theorem. We state this as the final result of the lecture.

Corollary 4.23. Let X,Y be K-Hilbert spaces and A : D(A) ⊂ X → Y be linear, injective and closed.
Then the inverse operator A−1 : Ran(A) ⊂ Y → D(A) ⊂ X is linear and closed.

Concerning the spectrum, note that in finite dimensions we have σ(A) = σp(A). In infinite dimensions
this is not true in general. For instance, consider the right-shift TR : `2 → `2 defined by TR((an)n∈N) =
(0, a1, a2, . . .). If TR(a) = λa, then either λ = 0, so that an = 0 for all n ∈ N. Thus TR is injective. If λ 6= 0,
then TR(a) = λa yields a1 = 0 and then by iteration an = 0 for all n ≥ 2. Hence also TR−λI is injective.
However, TR is not surjective since e1 /∈ Ran(TR), so that 0 ∈ σ(TR) \ σp(TR). More precisely, the image
of TR is not dense in `2 since for each element a ∈ `2 we have ‖TR(a) − e1‖2 ≥ 1. Hence 0 ∈ σr(TR).
One can show that σr(TR) = B1(0) and σc(TR) = ∂B1(0). There is a rich theory on the spectrum of
linear operators, especially for normal or self-adjoint operators. For more information I suggest to attend
a course on (linear) functional analysis or to consult the literature.

We close the lecture with a notation that is usually used in quantum mechanics for some objects we
introduced in this chapter.

Definition 4.24 (Dirac’s Bra-ket notation). Let X be a K-Hilbert space with dual space X ′. One writes
vectors x ∈ X as |x〉 (called ’ket’) and bounded, linear functionals x′ ∈ X ′ as 〈x′| (called ’bra’). The scalar
product (or evaluation of x′ at x according to the Riesz representation theorem) then takes the form 〈x′|x〉.
Note that one writes only one vertical bar. The symbol |x〉〈x′| means the operator X 3 y 7→ x〈x′, y〉 ∈ X.

Email address: matthias.ruf@epfl.ch

28The closedness of a linear operator is equivalent to the closedness of its graph G(A) = {(x,A(x)) : x ∈ D(A)} in
X × Y . Hence the name closed graph theorem.

29The same result holds for operators between Banach spaces X and Y .
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